Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Methods Mol Biol ; 2785: 177-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427195

RESUMEN

This paper provides an overview of the role of neuroinflammation in Alzheimer's disease and other neurodegenerative diseases, highlighting the potential of anti-inflammatory treatments to slow or prevent decline. This research focuses on the use of positron emission tomography (PET) imaging to visualize and quantify molecular brain changes in patients, specifically microglial activation and reactive astrogliosis. We discuss the development and application of several PET radioligands, including first-generation ligands like PK11195 and Ro5-4864, as well as second- and third-generation ligands such as [11C]PBR28, [18F]DPA-714, [18F]GE-180, and [11C]ER176. These ligands target the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia and upregulated in astrocytes. We also address the limitations of these ligands, such as low brain uptake, poor penetration of the blood-brain barrier, short half-life, and variable kinetic behavior. Furthermore, we demonstrate the impact of genetic polymorphisms on ligand binding.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neuroinflamatorias , Humanos , Receptores de GABA/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Ligandos , Microglía/metabolismo
2.
Nucl Med Biol ; 128-129: 108878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324923

RESUMEN

OBJECTIVE: Diabetic patients often experience chronic inflammation and fibrosis in their cardiac tissues, highlighting the pressing need for the development of sensitive diagnostic methods for longitudinal assessment of diabetic cardiomyopathy. This study aims to evaluate the significance of an inflammatory marker known as translocator protein (TSPO) in a positron emission tomography (PET) protocol for longitudinally monitoring cardiac dysfunction in a diabetic animal model. Additionally, we compared the commonly used radiotracer, 18F-fluoro-2-deoxy-d-glucose (18F-FDG). METHODS: Fourteen 7-week-old female Sprague-Dawley rats were used in this study. Longitudinal PET experiments were conducted using 18F-N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide (18F-FEPPA) (n = 3), the TSPO radiotracer, and 18F-FDG (n = 3), both before and after the onset of diabetes. Histological and immunohistochemical staining assays were also conducted in both the control (n = 4) and diabetes (n = 4) groups. RESULTS: Results indicated a significant increase in cardiac tissue uptake of 18F-FEPPA after the onset of diabetes (P < 0.05), aligning with elevated TSPO levels observed in diabetic animals according to histological data. Conversely, the uptake of 18F-FDG in cardiac tissue significantly decreased after the onset of diabetes (P < 0.05). CONCLUSION: These findings suggest that 18F-FEPPA can function as a sensitive probe for detecting chronic inflammation and fibrosis in the cardiac tissues of diabetic animals.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cardiomiopatías Diabéticas , Humanos , Ratas , Femenino , Animales , Fluorodesoxiglucosa F18 , Radiofármacos , Ratas Sprague-Dawley , Tomografía de Emisión de Positrones , Inflamación , Fibrosis , Receptores de GABA/metabolismo
3.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139248

RESUMEN

Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.


Asunto(s)
Artritis Reumatoide , Enfermedades no Transmisibles , Humanos , Ciclooxigenasa 2/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/metabolismo , Biomarcadores/metabolismo , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/patología , Inflamación/metabolismo , Receptores de GABA/metabolismo , Proteínas Portadoras/metabolismo
4.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37443691

RESUMEN

Brain-derived neurotrophic factor (BDNF) interacts with tropomyosin-related kinase B (TrkB) to promote neuronal growth, survival, differentiation, neurotransmitter release, and synaptic plasticity. The translocator protein (TSPO) is known to be found in arterial plaques, which are a symptom of atherosclerosis and a contributory cause of ischemic stroke. This study aims to determine the diagnostic accuracy of plasma BDNF and TSPO levels in discriminating new-onset acute ischemic stroke (AIS) patients from individuals without acute ischemic stroke. A total of 90 AIS patients (61% male, with a mean age of 67.7 ± 12.88) were recruited consecutively in a stroke unit, and each patient was paired with two age- and gender-matched controls. The sensitivity, specificity, and area of the curve between high plasma BDNF and TSPO and having AIS was determined using receiver operating characteristic curves. Furthermore, compared to the controls, AIS patients exhibited significantly higher levels of BDNF and TSPO, blood pressure, HbA1c, and white blood cells, as well as higher creatinine levels. The plasma levels of BDNF and TSPO can significantly discriminate AIS patients from healthy individuals (AUC 0.76 and 0.89, respectively). However, combining the two biomarkers provided little improvement in AUC (0.90). It may be possible to use elevated levels of TSPO as a diagnostic biomarker in patients with acute ischemic stroke upon admission.

5.
Front Cell Neurosci ; 17: 1210205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416505

RESUMEN

Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.

6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111333

RESUMEN

The translocator protein (TSPO) is an interesting biological target for molecular imaging and therapy because the overexpression of TSPO is associated with microglial activation caused by neuronal damage or neuroinflammation, and these activated microglia are involved in various central nervous system (CNS) diseases. The TSPO is a target for neuroprotective treatment, which is used with the aim of reducing microglial cell activation. The novel N,N-disubstituted pyrazolopyrimidine acetamides scaffold (GMA 7-17), which bears a fluorine atom and is directly linked to the phenyl moiety, was synthesized, and each of the novel ligands was characterized in vitro. All of the newly synthesized ligands displayed picomolar to nanomolar affinity for the TSPO. Particularly, an in vitro affinity study led to the discovery of 2-(5,7-diethyl-2-(4-fluorophenyl)pyrazolo [1,5-a]pyrimidin-3-yl)-N-ethyl-N-phenylacetamide GMA 15 (Ki = 60 pM), a novel TSPO ligand that exhibits a 61-fold enhancement in affinity compared to the reference standard DPA-714 (Ki = 3.66 nM). Molecular dynamic (MD) studies of the highest affinity binder, GMA 15, were carried out to check its time-dependent stability with the receptor compared to DPA-714 and PK11195. The hydrogen bond plot also indicated that GMA 15 formed higher hydrogen bonds compared to DPA-714 and PK11195. We anticipate that further optimization to enhance the potency in a cellular assay needs to be followed, but our strategy of identifying potential TSPO binding novel scaffolds may open up a new avenue to develop novel TSPO ligands suited for potential molecular imaging and a wide range of therapeutic applications.

7.
Methods Mol Biol ; 2662: 147-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37076678

RESUMEN

Brown adipose tissue (BAT) is closely associated with thermogenesis and related to numerous diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and obesity. Using molecular imaging technologies to monitor BAT could facilitate etiology elucidation, disease diagnosis, and therapeutics development. Translocator protein (TSPO), an 18 kDa protein that mainly locates on the outer mitochondrial membrane, has been proven as a promising biomarker for monitoring BAT mass. Here, we lay out the steps for imaging BAT with TSPO PET tracer [18F]-DPA in mouse studies.


Asunto(s)
Tejido Adiposo Pardo , Diabetes Mellitus Tipo 2 , Ratones , Animales , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas Portadoras/metabolismo , Animales de Laboratorio
8.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831378

RESUMEN

BACKGROUND: Boron neutron capture therapy (BNCT) has been adapted to high-grade gliomas (HG); however, some gliomas are refractory to BNCT using boronophenylalanine (BPA). In this study, the feasibility of BNCT targeting the 18 kDa translocator protein (TSPO) expressed in glioblastoma and surrounding environmental cells was investigated. METHODS: Three rat glioma cell lines, an F98 rat glioma bearing brain tumor model, DPA-BSTPG which is a boron-10 compound targeting TSPO, BPA, and sodium borocaptate (BSH) were used. TSPO expression was evaluated in the F98 rat glioma model. Boron uptake was assessed in three rat glioma cell lines and in the F98 rat glioma model. In vitro and in vivo neutron irradiation experiments were performed. RESULTS: DPA-BSTPG was efficiently taken up in vitro. The brain tumor has 16-fold higher TSPO expressions than its brain tissue. The compound biological effectiveness value of DPA-BSTPG was 8.43 to F98 rat glioma cells. The boron concentration in the tumor using DPA-BSTPG convection-enhanced delivery (CED) administration was approximately twice as high as using BPA intravenous administration. BNCT using DPA-BSTPG has significant efficacy over the untreated group. BNCT using a combination of BPA and DPA-BSTPG gained significantly longer survival times than using BPA alone. CONCLUSION: DPA-BSTPG in combination with BPA may provide the multi-targeted neutron capture therapy against HG.

9.
Contemp Clin Trials ; 126: 107087, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657520

RESUMEN

INTRODUCTION: Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS: This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov (NCT03106740).


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/tratamiento farmacológico , Minociclina/uso terapéutico , Enfermedades Neuroinflamatorias , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/tratamiento farmacológico , Método Doble Ciego , Resultado del Tratamiento , Receptores de GABA/metabolismo , Receptores de GABA/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
EJNMMI Res ; 13(1): 1, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633702

RESUMEN

BACKGROUND: The purpose of this study was to assess the feasibility of using a minimally invasive simultaneous estimation method (SIME) to quantify the binding of the 18-kDa translocator protein tracer [18F]FEPPA. Arterial sampling was avoided by extracting an image-derived input function (IDIF) that was metabolite-corrected using venous blood samples. The possibility of reducing scan duration to 90 min from the recommended 2-3 h was investigated by assuming a uniform non-displaceable distribution volume (VND) to simplify the SIME fitting. RESULTS: SIME was applied to retrospective data from healthy volunteers and was comprised of both high-affinity binders (HABs) and mixed-affinity binders (MABs). Estimates of global VND and regional total distribution volume (VT) from SIME were not significantly different from values obtained using a two-tissue compartment model (2CTM). Regional VT estimates were greater for HABs compared to MABs for both the 2TCM and SIME, while the SIME estimates had lower inter-subject variability (41 ± 17% reduction). Binding potential (BPND) values calculated from regional VT and brain-wide VND estimates were also greater for HABs, and reducing the scan time from 120 to 90 min had no significant effect on BPND. The feasibility of using venous metabolite correction was evaluated in a large animal model involving a simultaneous collection of arterial and venous samples. Strong linear correlations were found between venous and arterial measurements of the blood-to-plasma ratio and the remaining [18F]FEPPA fraction. Lastly, estimates of BPND and the specific distribution volume (i.e., VS = VT - VND) from a separate group of healthy volunteers (90 min scan time, venous-scaled IDIFs) agreed with estimates from the retrospective data for both genotypes. CONCLUSIONS: The results of this study demonstrate that accurate estimates of regional VT, BPND and VS can be obtained by applying SIME to [18F]FEPPA data. Furthermore, the application of SIME enabled the scan time to be reduced to 90 min, and the approach worked well with IDIFs that were scaled and metabolite-corrected using venous blood samples.

11.
ACS Chem Neurosci ; 13(22): 3188-3197, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36300862

RESUMEN

The 18 kDa translocator protein (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, survival, and cell proliferation. Its expression in the CNS, and mainly in glial cells, is upregulated in neuropathologies and brain injury. In this study, the potential of targeting TSPO for the therapeutic treatment of inflammatory-based retinal neurodegeneration was evaluated by means of an in vitro model of lipopolysaccharide (LPS)-induced degeneration in 661 W cells, a photoreceptor-like cell line. After the assessment of the expression of TSPO in 661W cells, which, to the best of our knowledge, was never investigated so far, the anti-inflammatory and cytoprotective effects of a number of known TSPO ligands, belonging to the class of N,N-dialkyl-2-arylindol-3-ylglyoxylamides (PIGAs), were evaluated, using the classic TSPO ligand PK11195 as the reference standard. All tested PIGAs showed the ability to modulate the inflammatory and apoptotic processes in 661 W photoreceptor-like cells and to reduce LPS-driven cellular cytotoxicity. The protective effect of PIGAs was, in all cases, reduced by cotreatment with the pregnenolone synthesis inhibitor SU-10603, suggesting the involvement of neurosteroids in the protective mechanism. As inflammatory processes play a crucial role in the retinal neurodegenerative disease progression toward photoreceptors' death and complete blindness, targeting TSPO might represent a successful strategy to slow down this degenerative process that may lead to the inexorable loss of vision.


Asunto(s)
Enfermedades Neurodegenerativas , Degeneración Retiniana , Humanos , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Lipopolisacáridos/farmacología , Receptores de GABA/metabolismo , Inflamación/metabolismo , Apoptosis , Proteínas Portadoras , Ligandos
12.
Biochem J ; 479(13): 1455-1466, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35819398

RESUMEN

Translocator protein (TSPO, 18 kDa), formerly known as peripheral benzodiazepine receptor, is an evolutionary well-conserved protein located on the outer mitochondrial membrane. TSPO is involved in a variety of fundamental physiological functions and cellular processes. Its expression levels are regulated under many pathological conditions, therefore, TSPO has been proposed as a tool for diagnostic imaging and an attractive therapeutic drug target in the nervous system. Several synthetic TSPO ligands have thus been explored as agonists and antagonists for innovative treatments as neuroprotective and regenerative agents. In this review, we provide state-of-the-art knowledge of TSPO functions in the brain and peripheral nervous system. Particular emphasis is placed on its contribution to important physiological functions such as mitochondrial homeostasis, energy metabolism and steroidogenesis. We also report how it is involved in neuroinflammation, brain injury and diseases of the nervous system.


Asunto(s)
Proteínas Mitocondriales , Receptores de GABA , Encéfalo/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
13.
Biomedicines ; 10(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35453488

RESUMEN

The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [18F]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (±1 day). [18F]GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse; in vitro: n = 21 GBM mice; n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [18F]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBRmax +27% compared to sham mice, p = 0.001). In GBM mice, [18F]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBRmax +16% compared to day 4, p = 0.011. [18F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [18F]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [18F]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [18F]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections.

14.
Nucl Med Biol ; 108-109: 76-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349913

RESUMEN

INTRODUCTION: 11C-DPA-713 is a positron emission tomography (PET) radiotracer developed for imaging the expression of the translocator protein (TSPO) in glial cells, which is considered to be a marker of the neuroinflammatory burden. This study investigated the pharmacokinetic profile of 11C-DPA-713 and evaluated kinetic modeling and non-invasive TSPO quantification using dynamic PET imaging data in the Alzheimer's disease (AD) and cognitive normal (CN) participants. METHODS: Eleven patients with AD and 6 CN participants were examined using dynamic 11C-DPA-713 PET imaging for 60 min with arterial blood sampling. Time-activity curves were calculated from the cerebellum and three composite regions of interest (ROIs), according to the anatomical definitions of Braak's stages 1 to 3, stage 4, stage 5, and stage 6 that correspond to the pathological stages of tangle deposition. The total distribution volume (VT) was evaluated using compartmental modeling and graphical analysis. Reference region-based methods were implemented using an optimal area that was assumed to be void of the radiotracer target as reference tissue. RESULTS: The concentration of radioactivity in plasma demonstrated rapid clearance. 11C-DPA-713 peaked rapidly in the gray matter. Compartmental modeling resulted in a good fit, and the one-tissue model with estimated blood volume correction (1Tv) showed the best performance. The estimated VT obtained from the graphical plasma methods was highly correlated with that obtained from 1Tv. Reference region-based analysis was conducted using the Braak 6 area as the reference region, and the estimated non-displaceable binding potential was highly correlated with that obtained from 1Tv. CONCLUSION: 11C-DPA-713 possesses properties suitable for TSPO quantification with PET imaging. The Braak 6 area was shown to be a useful reference region in the patients with AD and the CN participants, and non-invasive reference tissue models using the Braak 6 area as a reference region can be employed for TSPO quantification with 11C-DPA-713-PET imaging as an alternative to the invasive compartmental model.


Asunto(s)
Enfermedad de Alzheimer , Pirazoles , Acetamidas/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Tomografía de Emisión de Positrones/métodos , Pirazoles/química , Pirimidinas/química , Receptores de GABA/metabolismo
15.
Front Med (Lausanne) ; 9: 830020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223925

RESUMEN

AIM: Understanding neuroinflammation after acute ischemic stroke is a crucial step on the way to an individualized post-stroke treatment. Microglia activation, an essential part of neuroinflammation, can be assessed using [18F]GE-180 18 kDa translocator protein positron emission tomography (TSPO-PET). However, the commonly used 60-90 min post-injection (p.i.) time window was not yet proven to be suitable for post-stroke neuroinflammation assessment. In this study, we compare semi-quantitative estimates derived from late time frames to quantitative estimates calculated using a full 0-90 min dynamic scan in a mouse photothrombotic stroke (PT) model. MATERIALS AND METHODS: Six mice after PT and six sham mice were included in the study. For a half of the mice, we acquired four serial 0-90 min scans per mouse (analysis cohort) and calculated standardized uptake value ratios (SUVRs; cerebellar reference) for the PT volume of interest (VOI) in five late 10 min time frames as well as distribution volume ratios (DVRs) for the same VOI. We compared late static 10 min SUVRs and the 60-90 min time frame of the analysis cohort to the corresponding DVRs by linear fitting. The other half of the animals received a static 60-90 min scan and was used as a validation cohort. We extrapolated DVRs by using the static 60-90 min p.i. time window, which were compared to the DVRs of the analysis cohort. RESULTS: We found high linear correlations between SUVRs and DVRs in the analysis cohort for all studied 10 min time frames, while the fits of the 60-70, 70-80, and 80-90 min p.i. time frames were the ones closest to the line of identity. For the 60-90 min time window, we observed an excellent linear correlation between SUVR and DVR regardless of the phenotype (PT vs. sham). The extrapolated DVRs of the validation cohort were not significantly different from the DVRs of the analysis group. CONCLUSION: Simplified quantification by a reference tissue ratio of the late 60-90 min p.i. [18F]GE-180 PET image can replace full quantification of a dynamic scan for assessment of microglial activation in the mouse PT model.

16.
Med Chem ; 18(4): 497-508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34365957

RESUMEN

BACKGROUND: Translocator protein 18 kDa (TSPO) is a promising target for the creation of effective and safe neuropsychotropic drugs. The ligands of TSPO exhibit anxiolytic, antidepressant, neuroprotective and other activities without the side effects of benzodiazepines. METHODS: New TSPO ligands in the series of N,1-diphenylpyrrolo[1,2-a]pyrazine-3-carboxamides derivatives were designed using calculated pharmacophore model and molecular docking analysis. The synthesis of new compounds was carried out by two schemes using [3+3]-cycloaddition reaction of 2-azidoacrylic acid derivatives with pyrrolphenylketone as a key stage. The anxiolytic activity of new substances has been established using open field test with flash. RESULTS: Several synthesized N,1-diphenylpyrrolo[1,2-a]pyrazine-3-carboxamides derivatives significantly increased the total motor activity of Balb/c mice compared to the control. The structureactivity relationship was investigated. The most effective compound was found to be GML-11 (Nbenzyl- N,1-diphenylpyrrolo[1,2-a]pyrazine-3-carboxamide), which had anxiolytic action in the dose range from 0.001 to 0.100 mg/kg (Balb/c, i.p.). This compound is two orders of magnitude higher in dose activity than all other pyrrolo[1,2-a]pyrazine TSPO ligands. CONCLUSION: Molecular modelling methods allowed us to create new TSPO ligands in the series of N,1-diphenylpyrrolo[1,2-a]pyrazine-3-carboxamides with high anxiolytic activity.


Asunto(s)
Ansiolíticos , Pirazinas , Animales , Ansiolíticos/farmacología , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Pirazinas/farmacología , Receptores de GABA/metabolismo
17.
Eur J Nucl Med Mol Imaging ; 49(1): 221-233, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34120191

RESUMEN

Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1-2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epilepsia/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 49(1): 234-245, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33978829

RESUMEN

PURPOSE: Calcineurin inhibitors (CNI) can cause long-term impairment of brain function. Possible pathomechanisms include alterations of the cerebral immune system. This study used positron emission tomography (PET) imaging with the translocator protein (TSPO) ligand 18F-GE-180 to evaluate microglial activation in liver-transplanted patients under different regimens of immunosuppression. METHODS: PET was performed in 22 liver-transplanted patients (3 CNI free, 9 with low-dose CNI, 10 with standard-dose CNI immunosuppression) and 9 healthy controls. The total distribution volume (VT) estimated in 12 volumes-of-interest was analyzed regarding TSPO genotype, CNI therapy, and cognitive performance. RESULTS: In controls, VT was about 80% higher in high affinity binders (n = 5) compared to mixed affinity binders (n = 3). Mean VT corrected for TSPO genotype was significantly lower in patients compared to controls, especially in patients in whom CNI dose had been reduced because of nephrotoxic side effect. CONCLUSION: Our results provide evidence of chronic suppression of microglial activity in liver-transplanted patients under CNI therapy especially in patients with high sensitivity to CNI toxicity.


Asunto(s)
Trasplante de Hígado , Microglía , Encéfalo/metabolismo , Humanos , Terapia de Inmunosupresión/efectos adversos , Microglía/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo
19.
J Biochem ; 170(2): 239-243, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33846725

RESUMEN

The translocator protein (TSPO) is a five-helix transmembrane protein localized to the outer mitochondria membrane. Radioligand binding assays and chemical crosslinking showed TSPO to be a high affinity cholesterol-binding protein. In this report, we show that TSPO in mitochondrial fractions from MA-10 mouse tumour Leydig cells can interact directly and competitively with the clickable photoreactive cholesterol analogue. PhotoClick cholesterol showed saturable photoaffinity labelling of TSPO that could be specifically immunoprecipitated with anti-TSPO antibody, following the click reaction with the fluorescent-azide probe, tetramethylrhodamine (TAMRA)-azide. Moreover, excess cholesterol reduced the photolabelling of both total mitochondrial proteins and TSPO. Together, the results of this study demonstrated direct binding of PhotoClick cholesterol to TSPO and that this interaction occurs at physiologically relevant site(s).


Asunto(s)
Colesterol/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Receptores de GABA/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Colesterol/análogos & derivados , Colesterol/química , Química Clic/métodos , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Proteínas de Transporte de Membrana Mitocondrial/química , Elastasa Pancreática/metabolismo , Procesos Fotoquímicos , Receptores de GABA/química
20.
J Cereb Blood Flow Metab ; 41(8): 2076-2089, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557690

RESUMEN

A substantial and constitutive expression of translocator protein (TSPO) in cerebral blood vessels hampers the sensitive detection of neuroinflammation characterized by greatly induced TSPO expression in activated glia. Here, we conducted in vivo positron emission tomography (PET) and in vitro autoradiographic imaging of normal and TSPO-deficient mouse brains to compare the binding properties of 18F-FEBMP, a relatively novel TSPO radioligand developed for human studies based on its insensitivity to a common polymorphism, with 11C-PK11195, as well as other commonly used TSPO radioligands including 11C-PBR28, 11C-Ac5216 and 18F-FEDAA1106. TSPO in cerebral vessels of normal mice was found to provide a major binding site for 11C-PK11195, 11C-PBR28 and 18F-FEDAA1106, in contrast to no overt specific binding of 18F-FEBMP and 11C-Ac5216 to this vascular component. In addition, 18F-FEBMP yielded PET images of microglial TSPO with a higher contrast than 11C-PK11195 in a tau transgenic mouse modeling Alzheimer's disease (AD) and allied neurodegenerative tauopathies. Moreover, TSPO expression examined by immunoblotting was significantly increased in AD brains compared with healthy controls, and was well correlated with the autoradiographic binding of 18F-FEBMP but not 11C-PK11195. Our findings support the potential advantage of comparatively glial TSPO-selective radioligands such as 18F-FEBMP for PET imaging of inflammatory glial cells.


Asunto(s)
Enfermedad de Alzheimer/patología , Ligandos , Microglía/metabolismo , Receptores de GABA/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación , Radiofármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA