Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotheranostics ; 8(3): 285-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577322

RESUMEN

Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.


Asunto(s)
Carcinoma de Células Escamosas , Liposomas , Animales , Ratones , Liposomas/química , ARN Interferente Pequeño/genética , Microburbujas , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Receptores ErbB/genética , Luciferasas
2.
Ultrasound Med Biol ; 49(4): 996-1006, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36697268

RESUMEN

OBJECTIVE: Ultrasound (US)-targeted microbubble (MB) cavitation (UTMC)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. Because of the potentially longer circulation time and relative ease of storage and reconstitution of polymer-shelled MBs compared with lipid MBs, we investigated the dynamic behavior of polymer microbubbles and their therapeutic potential for sonoreperfusion (SRP) therapy. METHODS: The fate of polymer MBs during a single long tone-burst exposure (1 MHz, 5 ms) at various acoustic pressures and MB concentrations was recorded via high-speed microscopy and passive cavitation detection (PCD). SRP efficacy of the polymer MBs was investigated in an in vitro flow system and compared with that of lipid MBs. DISCUSSION: Microscopy videos indicated that polymer MBs formed gas-filled clusters that continued to oscillate, fragment and form new gas-filled clusters during the single US burst. PCD confirmed continued acoustic activity throughout the 5-ms US excitation. SRP efficacy with polymer MBs increased with pulse duration and acoustic pressure similarly to that with lipid MBs but no significant differences were found between polymer and lipid MBs. CONCLUSION: These data suggest that persistent cavitation activity from polymer MBs during long tone-burst US excitation confers excellent reperfusion efficacy.


Asunto(s)
Microburbujas , Terapia por Ultrasonido , Acústica , Lípidos
3.
Theranostics ; 9(23): 7088-7098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31660088

RESUMEN

MicroRNAs (miRs) are dysregulated in pathological left ventricular hypertrophy. AntimiR inhibition of miR-23a suppressed hypertension-induced cardiac hypertrophy in preclinical models, but clinical translation is limited by a lack of cardiac-targeted delivery systems. Ultrasound-targeted microbubble cavitation (UTMC) utilizes microbubbles as nucleic acid carriers to target delivery of molecular therapeutics to the heart. The objective of this study was to evaluate the efficacy of UTMC targeted delivery of antimiR-23a to the hearts of mice for suppression of hypertension-induced cardiac hypertrophy. Methods: Cationic lipid microbubbles were loaded with 300 pmol negative control antimiR (NC) or antimiR-23a. Mice received continuous phenylephrine infusion via implanted osmotic minipumps, then UTMC treatments with intravenously injected antimiR-loaded microbubbles 0, 3, and 7 days later. At 2 weeks, hearts were harvested and miR-23a levels were measured. Left ventricular (LV) mass and function were assessed with echocardiography. Results: UTMC treatment with antimiR-23a decreased cardiac miR-23a levels by 41 ± 8% compared to UTMC + antimiR-NC controls (p < 0.01). Furthermore, LV mass after 1 week of phenylephrine treatment was 17 ± 10% lower following UTMC + antimiR-23a treatment compared to UTMC + antimiR-NC controls (p = 0.02). At 2 weeks, fractional shortening was 23% higher in the UTMC + antimiR-23a mice compared to UTMC + antimiR-NC controls (p < 0.01). Conclusions: UTMC is an effective technique for targeted functional delivery of antimiRs to the heart causing suppression of cardiac hypertrophy and preservation of systolic function. This approach could represent a revolutionary therapy for patients suffering from pathological cardiac hypertrophy and other cardiovascular conditions.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/terapia , Sistemas de Liberación de Medicamentos/métodos , MicroARNs/genética , ARN sin Sentido/administración & dosificación , Animales , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Corazón/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/administración & dosificación , MicroARNs/química , MicroARNs/metabolismo , Microburbujas , ARN sin Sentido/genética , ARN sin Sentido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA