Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.305
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ren Fail ; 46(2): 2381604, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39090967

RESUMEN

OBJECTIVES: Uncoupling protein 2 (UCP2) was involved in the pathogenesis and development of kidney diseases. Many signaling pathways and factors regulate the expression of UCP2. We aimed to investigate the precise role of UCP2 and its signaling pathways in kidney diseases. METHODS: We summarized the available evidence to yield a more detailed conclusion of the signal transduction pathways of UCP2 and its role in the development and progression of kidney diseases. RESULTS: UCP2 could interact with 14.3.3 family proteins, mitochondrial phospholipase iPLA2γ, NMDAR, glucokinase, PPARγ2. There existed a signaling pathway between UCP2 and NMDAR, PPARγ. UCP2 can inhibit the ROS production, inflammatory response, and apoptosis, which may protect against renal injury, particularly AKI. Meanwhile UCP2 can decrease ATP production and inhibit the secretion of insulin, which may alleviate chronic renal damages, such as diabetic nephropathy and kidney fibrosis. CONCLUSIONS: Homeostasis of UCP2 is helpful for kidney health. UCP2 may play different roles in different kinds of renal injury.


Asunto(s)
Transducción de Señal , Proteína Desacopladora 2 , Proteína Desacopladora 2/metabolismo , Humanos , Enfermedades Renales/metabolismo , Animales , Riñón/metabolismo , Riñón/patología , Apoptosis , Especies Reactivas de Oxígeno/metabolismo
2.
Turk J Chem ; 48(3): 470-483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050937

RESUMEN

The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.

3.
Cell Rep ; 43(7): 114425, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38970789

RESUMEN

Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Obesidad , Animales , Obesidad/metabolismo , Obesidad/terapia , Ratones , Proteína Desacopladora 1/metabolismo , Ingeniería de Tejidos/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Humanos , Peso Corporal , Ratones Obesos
4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(4): 502-511, 2024 Aug 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39049639

RESUMEN

OBJECTIVES: This study aims to explore changes in uncoupling protein 2 (UCP2) in experimental periodontitis-associated renal injury induced by ligation and investigate the effect of UCP2 on renal injury induced by periodontitis. METHODS: Twelve Wistar male rats were randomly divided into two groups: control and periodontitis groups. A periodontal model was built by ligating the maxillary first molars area with 0.2 mm orthodontic ligature wire. After 8 weeks, the intraoral condition of the rats was observed and periodontal clinical indices such as gingival bleeding index (BI), periodontal probing depth (PD), and tooth mobility (TM) were detected. The maxillary bone was scanned by Micro CT to observe the alveolar bone resorption. The tissue mineral density (TMD), bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular bone separation (Tb.Sp) were recorded, and the distance from the enamel bone boundary to the alveolar crest (CEJ-ABC) of the maxillary first molar was measured. The oxidative stress indexes such as malondialdehyde, glutathione (GSH), and superoxide dismutase (SOD) were detected using frozen rat kidney tissue. The gene expression of UCP2, nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) was observed by quantitative real-time polymerase chain reaction (qRT-PCR) test. The gingival tissue of the rats was used for immunohistochemical staining to observe the expression of the UCP2 protein. The fixed rat kidney tissue was used for hematoxylin-eosin (HE), periodic acid-schiff (PAS), MitoSOX Red, JC-1, and immunohistochemical staining to observe the renal histopathology, the level of reactive oxygen species (ROS), the level of mitochondrial membrane potential, and the expression of UCP2, Nrf2, and PGC-1α protein. Rat serum was collected to detect renal function indices, namely, blood urea nitrogen (BUN), creatinine (Cre), and albumin (Alb). RESULTS: Compared with the control group, the periodontitis group showed red, swollen, and soft gingival tissue, with gingival probing bleeding, periodontal PD increased, tooth loosening, alveolar bone resorption, decreased TMD, BMD, BV/TV, and Tb.Th indices, and increased Tb.Sp index, CEJ-ABC, and gingival UCP2 protein expression. Compared with the control group, the levels of MDA and ROS in the kidney tissue of periodontitis rats and the gene and protein expression of UCP2 increased, and the levels of MMP, GSH, and SOD and the gene and protein expression of Nrf2 and PGC-1α decreased. Renal functional indices, namely, BUN, Cre, and Alb, were not significantly different between the two groups. CONCLUSIONS: UCP2 may play a role in renal injury induced by periodontitis through oxidative stress.


Asunto(s)
Periodontitis , Ratas Wistar , Proteína Desacopladora 2 , Animales , Proteína Desacopladora 2/metabolismo , Ratas , Periodontitis/metabolismo , Masculino , Estrés Oxidativo , Riñón/metabolismo , Densidad Ósea , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Modelos Animales de Enfermedad
5.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3270-3279, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041089

RESUMEN

This study established a rat model of obesity by using a high-fat diet(HFD) to explore the effect of polymethoxylated flavonoids on glucose and lipid metabolism in the model rats and decipher the role and mechanism of polymethoxylated flavonoids in mitigating obesity. Thirty normal SD rats were selected and randomized into normal, model, ezetimibe(0.1 mg·kg~(-1)), and polymethoxylated flavonoids(62.5 mg·kg~(-1) and 125 mg·kg~(-1)) groups based on the body weight. Except the normal group receiving a conventional diet, the other groups received a HFD. Rats were administrated with corresponding doses of drugs by gavage. During the administration period, the body weight of each group of rats was regularly weighed, and the serum lipid and glucose levels were measured by a fully automated biochemical analyzer. Islet homeostasis and serum levels of obesity factors were measured by ELISA. The 16S rRNA high-throughput sequencing was employed to study the gut microbiota. Hematoxylin-eosin staining was employed to observe the histomorphology of white fat, brown fat, and pancreas. After the wet weights of white fat and brown fat were measured, the organ index was calculated. Immunohistochemistry and Western blot were employed to determine the protein levels. The results showed that polymethoxylated flavonoids reduced the body weight and Lee's index and improved blood lipid levels of the model rats. Polymethoxylated flavonoids reduced blood glucose and insulin secretion, increased insulin responsiveness, and alleviated insulin resistance. In addition, polymethoxylated flavonoids regulated the serum levels of obesity factors and reduced the weights and indexes of white fat and brown fat, the diameter of white adipocytes, and the number of fat vacuoles in brown fat and pancreatic islet cells. The intervention with polymethoxylated flavonoids increased the diversity of gut microbiota in the model rats, increasing the beneficial bacteria associated with glucose and lipid metabolism and reduced the harmful bacteria at the genus level. In addition, polymethoxylated flavonoids up-regulated the protein levels of glucose transporter 4(GLUT4), phosphorylated AMP-activated protein kinase(p-AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α(PGC-1α), and uncoupling protein 1(UCP1). In summary, polymethoxylated flavonoids may increase the body utilization of glucose and lipids by regulating the homeostasis of insulin, the serum levels of obesity factors, the diversity of gut microbiota, and the expression of mitochondrial metabolism-related proteins in brown adipocytes, thereby mitigating obesity in rats.


Asunto(s)
Dieta Alta en Grasa , Flavonoides , Metabolismo de los Lípidos , Obesidad , Ratas Sprague-Dawley , Animales , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas , Metabolismo de los Lípidos/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Masculino , Glucosa/metabolismo , Modelos Animales de Enfermedad , Humanos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Peso Corporal/efectos de los fármacos
6.
Acta Pharm Sin B ; 14(7): 3266-3280, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027239

RESUMEN

The drugs extending healthspan in clinic have always been searched. Nitazoxanide is an FDA-approved clinical antiprotozoal drug. Nitazoxanide is rapidly metabolized to tizoxanide after absorption in vivo. Our previous studies find that nitazoxanide and its metabolite tizoxanide induce mild mitochondrial uncoupling and activate cellular AMPK, oral nitazoxanide protects against experimental hyperlipidemia, hepatic steatosis, and atherosclerosis. Here, we demonstrate that both nitazoxanide and tizoxanide extend the lifespan and healthspan of Caenorhabditis elegans through Akt/AMPK/sir 2.1/daf16 pathway. Additionally, both nitazoxanide and tizoxanide improve high glucose-induced shortening of C. elegans lifespan. Nitazoxanide has been a clinical drug with a good safety profile, we suggest that it is a novel anti-aging drug.

7.
Bioessays ; : e2400037, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030821

RESUMEN

Genotoxic stress, arising from various environmental sources and endogenous cellular processes, pose a constant threat to genomic stability. Cells have evolved intricate mechanisms to detect and repair DNA damage, orchestrating a robust genotoxic stress response to safeguard the integrity of the genome. Recent research has shed light on the crucial role of co- and post-transcriptional regulatory mechanisms in modulating the cellular response to genotoxic stress. Here we highlight recent advances illustrating the intricate interplay between pre-mRNA processing, with a focus on 3'-end processing, and genotoxic stress response.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39025807

RESUMEN

Cocoa extract (CE) offers several health benefits, such as anti-obesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through ß3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.

9.
Acta Physiol (Oxf) ; : e14209, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072954

RESUMEN

AIM: Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS: In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS: We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION: Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.

10.
Cell Biochem Biophys ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856833

RESUMEN

The purpose of this work was to quantitatively characterize the effectiveness of oxidative phosphorylation uncouplers and decoupling agents in functionally active mitochondria, taking into account their content in the hydrophobic region of the inner membrane of these organelles. When conducting theoretical studies, it is accepted that uncouplers and decouplers occupy part of the volume of mitochondria to exhibit their activity, which is defined as the effective volume. The following quantities characterizing the action of these reagents are considered: (1) concentrations of reagents that cause double stimulation of mitochondrial respiration in state 4 ( C 200 ); (2) effective distribution coefficient ( E MW ) - the ratio of the amount of reagents in the effective volume of mitochondria and the water volume; (3) the relative amount of reagents associated with the effective volume of mitochondria ( U M / U T ); (4) specific activity of reagents localized in the effective volume of mitochondria ( A M ). We have developed methods for determining these values, based on an analysis of the dependence of the rate of mitochondrial respiration on the concentration of uncouplers and decoupling agents at two different concentrations of mitochondrial protein in the incubation medium. During experimental studies, we compared the effects of the classical protonophore uncouplers 2,4-dinitrophenol (DNP) and сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), the natural uncouplers lauric and palmitic acids, and the natural decouplers α,ω-tetradecanedioic (TDA) and α,ω-hexadecanedioic (HDA) acids that differ both in the structure of the molecule and in the degree of solubility in lipids. Using the developed methods, we have clarified the dependence of the degree of activity of these uncouplers and decoupling agents on the distribution of their molecules between the effective volume of mitochondria and the water volume.

12.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945884

RESUMEN

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Asunto(s)
Tejido Adiposo Pardo , Factor Neurotrófico Derivado del Encéfalo , Dieta Alta en Grasa , Glucósidos Iridoides , Iridoides , Norepinefrina , Obesidad , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Proteína Desacopladora 1 , Animales , Masculino , Proteína Desacopladora 1/metabolismo , Glucósidos Iridoides/farmacología , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Iridoides/farmacología , Norepinefrina/metabolismo , Canal Catiónico TRPA1/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas , Fármacos Antiobesidad/farmacología , Caminata , Aumento de Peso/efectos de los fármacos , Condicionamiento Físico Animal , Canales Catiónicos TRPV
13.
Chemistry ; : e202400931, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838073

RESUMEN

Mitochondrial uncoupling by small molecule protonophores is a promising strategy for developing novel anticancer agents. Recently, aryl urea substituted fatty acids (aryl ureas) were identified as a new class of protonophoric anticancer agents. To mediate proton transport these molecules self-assemble into membrane-permeable anionic dimers in which intermolecular hydrogen bonds between the carboxylate and aryl-urea anion receptor delocalise the negative charge across the aromatic π-system. In this work, we extend the aromatic π-system by introducing a second phenyl substituent to the aryl urea scaffold and compare the proton transport mechanisms and mitochondrial uncoupling actions of these compounds to their monoaryl analogues. It was found that incorporation of meta-linked phenyl substituents into the aryl urea scaffold enhanced proton transport in vesicles and demonstrated superior capacity to depolarise mitochondria, inhibit ATP production and reduce the viability of MDA-MB-231 breast cancer cells. In contrast, diphenyl ureas linked through a 1,4-distribution across the phenyl ring displayed diminished proton transport activity, despite both diphenyl urea isomers possessing similar binding affinities for carboxylates. Mechanistic studies suggest that inclusion of a second aryl ring changes the proton transport mechanism, presumably due to steric factors that impose higher energy penalties for dimer formation.

14.
Eur J Pharm Sci ; 199: 106820, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38821248

RESUMEN

Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Resistencia a la Insulina , Ratones Endogámicos C57BL , Obesidad , Proteína Desacopladora 1 , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Chalconas/farmacología , Ratones Obesos , Fármacos Antiobesidad/farmacología , Células 3T3-L1
15.
Biology (Basel) ; 13(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785767

RESUMEN

Adipose tissue plays an important role in regulating body temperature and metabolism, with white adipocytes serving as storage units for energy. Recent research focused on the browning of white adipocytes (beige adipocytes), causing thermogenesis and lipolysis. The process of browning is linked to the activation of uncoupling protein (UCP) expression, which can be mediated by the ß3 adrenergic receptor pathway. Transcriptional factors, such as peroxisome proliferator activated receptor γ (PPARγ) and PPARγ coactivator 1 alpha, play vital roles in cell fate determination for fat cells. Beige adipocytes have metabolic therapeutic potential to combat diseases such as obesity, diabetes mellitus, and dyslipidemia, owing to their significant impact on metabolic functions. However, the molecular mechanisms that cause the induction of browning are unclear. Therefore, research using animal models and primary culture is essential to provide an understanding of browning for further application in human metabolic studies. Pigs have physiological similarities to humans; hence, they are valuable models for research on adipose tissue. This study demonstrates the browning potential of pig white adipocytes through primary culture experiments. The results show that upregulation of UCP3 gene expression and fragmentation of lipid droplets into smaller particles occur due to isoproterenol stimulation, which activates beta-adrenergic receptor signaling. Furthermore, PPARγ and PGC-1α were found to activate the UCP3 promoter region, similar to that of UCP1. These findings suggest that pigs undergo metabolic changes that induce browning in white adipocytes, providing a promising approach for metabolic research with potential implications for human health. This study offers valuable insights into the mechanism of adipocyte browning using pig primary culture that can enhance our understanding of human metabolism, leading to cures for commonly occurring diseases.

16.
Clin Toxicol (Phila) ; 62(4): 267-268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38738682

RESUMEN

INTRODUCTION: There has been a previous case report of peri-arrest muscle rigidity in the setting of severe salicylate poisoning (serum salicylate concentration 1,500 mg/L), described as paratonia or rapid rigor mortis. We present an image of rapid rigor mortis in another fatal salicylate poisoning. CASE SUMMARY: We report a 42-year-old male with severe salicylate poisoning (peak salicylate concentration 1,600 mg/L). During the peri-arrest period, the patient developed isotonic flexion of the upper and lower extremities, the clinical signs of rapid-occurring rigor mortis. Despite resuscitative efforts, the patient died. IMAGE: Our patient is exhibiting peri-arrest rigidity in the upper extremities. DISCUSSION: Peri-mortem rigidity is due to depletion of adenosine triphosphate. Severe salicylate poisoning causes uncoupling of oxidative phosphorylation which prevents the production of adenosine triphosphate, which is required to release myosin from actin to allow the muscle to relax. A limitation of our report is that we did not definitively exclude other uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol. However, the history of aspirin ingestion was provided by the patient and corroborated by his mother, and it was confirmed by measurement of his salicylate concentration. CONCLUSION: We hypothesize that in our patient, rapid-occurring rigor mortis likely resulted from depletion of adenosine triphosphate. This occurred as a result of uncoupling of oxidative phosphorylation in the mitochondria from severe salicylate poisoning, as adenosine triphosphate is required for muscle relaxation.


Asunto(s)
Rigidez Muscular , Salicilatos , Humanos , Masculino , Adulto , Rigidez Muscular/inducido químicamente , Salicilatos/envenenamiento , Salicilatos/sangre , Resultado Fatal , Autopsia , Aspirina/envenenamiento
17.
J Biotechnol ; 389: 22-29, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38697360

RESUMEN

Rieske non-heme iron oxygenases (ROs) are redox enzymes essential for microbial biodegradation and natural product synthesis. These enzymes utilize molecular oxygen for oxygenation reactions, making them very useful biocatalysts due to their broad reaction scope and high selectivities. The mechanism of oxygen activation in ROs involves electron transfers between redox centers of associated protein components, forming an electron transfer chain (ETC). Although the ETC is essential for electron replenishment, it carries the risk of reactive oxygen species (ROS) formation due to electron loss during oxygen activation. Our previous study linked ROS formation to O2 uncoupling in the flavin-dependent reductase of the three-component cumene dioxygenase (CDO). In the present study, we extend this finding by investigating the effects of ROS formation on the multi-component CDO system in a cell-free environment. In particular, we focus on the effects of hydrogen peroxide (H2O2) formation in the presence of a NADH cofactor regeneration system on the catalytic efficiency of CDO in vitro. Based on this, we propose the implementation of hybrid systems with alternative (non-native) redox partners for CDO, which are highly advantageous in terms of reduced H2O2 formation and increased product formation. The hybrid system consisting of the RO-reductase from phthalate dioxygenase (PDR) and CDO proved to be the most promising for the oxyfunctionalization of indene, showing a 4-fold increase in product formation (20 mM) over 24 h (TTN of 1515) at a 3-fold increase in production rate.


Asunto(s)
Peróxido de Hidrógeno , Oxígeno , Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Oxigenasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NAD/metabolismo , Sistema Libre de Células , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Complejo III de Transporte de Electrones/metabolismo
18.
JCI Insight ; 9(11)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713533

RESUMEN

Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces - whereas Suv420h2 overexpression significantly increases - Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to downregulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn upregulates PGC1α protein levels, and this upregulation is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.


Asunto(s)
Adipocitos Beige , Tejido Adiposo Pardo , N-Metiltransferasa de Histona-Lisina , Ratones Noqueados , Obesidad , Termogénesis , Proteína Desacopladora 1 , Animales , Termogénesis/genética , Ratones , Adipocitos Beige/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Obesidad/metabolismo , Obesidad/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Adipocitos Marrones/metabolismo , Masculino , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Metabolismo Energético , Ratones Endogámicos C57BL
19.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732013

RESUMEN

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Asunto(s)
Ácido Abscísico , Receptor Relacionado con Estrógeno ERRalfa , Metabolismo Energético , Receptores de Estrógenos , Receptores de Estrógenos/metabolismo , Humanos , Animales , Ácido Abscísico/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-38723743

RESUMEN

Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.


Asunto(s)
Aclimatación , Tejido Adiposo Pardo , Arvicolinae , Frío , Termogénesis , Proteína Desacopladora 1 , Animales , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/metabolismo , Arvicolinae/fisiología , Aclimatación/fisiología , Proteína Desacopladora 1/metabolismo , Termogénesis/fisiología , Masculino , Regulación de la Temperatura Corporal/fisiología , Metabolismo Basal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA