Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115025

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.

2.
Biology (Basel) ; 13(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534426

RESUMEN

The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the expression of NPY and VIP might be modulated by acetylcholine. Importantly, the BLA is one of the brain regions that has one of the densest cholinergic innervations, which arise mainly from the basal forebrain cholinergic neurons. These cholinergic neurons depend on nerve growth factor (NGF) for their survival, connectivity, and function. Thus, in this study, we sought to determine if aging alters the densities of NPY- and VIP-positive neurons and cholinergic varicosities in the BLA and, in the affirmative, if those changes might rely on insufficient trophic support provided by NGF. The number of NPY-positive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased NPY expression was fully reversed by the infusion of NGF in the lateral ventricle. The density of cholinergic varicosities was similar in adult and old rats. On the other hand, the density of cholinergic varicosities is significantly higher in old rats treated with NGF than in adult and old rats. Our results indicate a dissimilar resistance of different populations of BLA interneurons to aging. Furthermore, the present data also show that the BLA cholinergic innervation is particularly resistant to aging effects. Finally, our results also show that the reduced NPY expression in the BLA of aged rats can be related to changes in the NGF neurotrophic support.

3.
BMC Ophthalmol ; 24(1): 41, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279089

RESUMEN

OBJECTIVE: This study aimed to investigate the potential involvement of vasoactive intestinal polypeptide (VIP) in myopia development and its contribution to the mechanism of action of the anti-myopia drug, atropine. METHODS: Thirty-three-week-old guinea pigs were randomly divided into normal control (NC, n = 10), monocularly form-deprived (FDM, n = 10), and FDM treated with 1% atropine (FDM + AT, n = 10) groups. The diopter and axial length were measured at 0, 2, and 4 weeks. Guinea pig eyeballs were removed at week four, fixed, and stained for morphological changes. Immunohistochemistry (IHC) and in situ hybridization (ISH) were performed to evaluate VIP protein and mRNA levels. RESULTS: The FDM group showed an apparent myopic shift compared to the control group. The results of the H&E staining were as follows: the cells of the inner/outer nuclear layers and retinal ganglion cells were disorganized; the choroidal thickness (ChT), blood vessel lumen, and area were decreased; the sclera was thinner, with disordered fibers and increased interfibrillar space. IHC and ISH revealed that VIP's mRNA and protein expressions were significantly up-regulated in the retina of the FDM group. Atropine treatment attenuated FDM-induced myopic shift and fundus changes, considerably reducing VIP's mRNA and protein expressions. CONCLUSIONS: The findings of elevated VIP mRNA and protein levels observed in the FDM group indicate the potential involvement of VIP in the pathogenesis and progression of myopia. The ability of atropine to reduce this phenomenon suggests that this may be one of the molecular mechanisms for atropine to control myopia.


Asunto(s)
Miopía , Péptido Intestinal Vasoactivo , Animales , Cobayas , Atropina/farmacología , Miopía/genética , Retina/metabolismo , ARN Mensajero/genética , Modelos Animales de Enfermedad
4.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38061549

RESUMEN

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Asunto(s)
Motilidad Gastrointestinal , Péptido Intestinal Vasoactivo , Humanos , Ratones , Animales , Péptido Intestinal Vasoactivo/metabolismo , Motilidad Gastrointestinal/fisiología , Neuroglía/metabolismo , Colinérgicos
5.
Life (Basel) ; 13(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37895355

RESUMEN

VIPomas are a type of neuroendocrine tumor that independently produces vasoactive intestinal peptide (VIP). VIPomas causing watery diarrhea, hypokalemia, and achlorhydria (WDHA) syndrome are not frequently observed in adult patients without pancreatic ailments. However, in children, the occurrence of a VIPoma originating in the pancreas is exceedingly uncommon. Instead, WDHA syndrome is more commonly associated with neurogenic tumors that secrete VIP, often located in the retroperitoneum or mediastinum. Among infants, chronic diarrhea is a prevalent issue that often necessitates the attention of pediatric gastroenterologists. The underlying causes are diverse, and delays in arriving at a definitive diagnosis can give rise to complications affecting the overall well-being of the child. The authors present the case of an infant with chronic watery diarrhea, subocclusion manifestations, mild hypokalemia, and metabolic hyperchloremic acidosis secondary to a VIPoma in the retroperitoneum that was diagnosed via abdominal ultrasound and tomography. The laboratory results revealed lowered potassium levels and an excessive secretion of VIP. Following the surgical removal of the tumor, the diarrhea resolved, and both electrolyte levels and the imbalanced hormone levels returned to normal. Immunohistochemical examination confirmed the diagnosis of ganglioneuroblastoma, with N-MYC negative on molecular biology tests. We present the clinical and histo-genetic aspects of this rare clinical entity, with a literature review.

6.
J Headache Pain ; 24(1): 76, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37370051

RESUMEN

BACKGROUND: Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS: We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION: While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.


Asunto(s)
Trastornos de Cefalalgia , Trastornos Migrañosos , Humanos , Adrenomedulina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina
7.
Acta Histochem ; 125(1): 151988, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36566584

RESUMEN

BACKGROUND: At present, there is an increased interest in the vaginal microbiome. It is believed that microbes play equally important roles in the vagina, including the modulation of neuronal pathways, as in the gut. However, in man as well as in animals, the vagina is the least well-studied part of the female reproductive system. The vagina, a fibromuscular tract, having two main functions, i.e., childbirth and sexual intercourse, is mainly innervated by the pudendal nerve and the pelvic splanchnic nerves (the uterovaginal nerve plexus) containing sympathetic, parasympathetic and nociceptive nerve fibers. Innervation density in the vaginal wall undergoes significant remodeling due to hormonally mediated physiological activity. Knowledge about expression and function of neuropeptides and neurotransmitters in the vaginal fibers is incomplete or not established. Most research concerning the neuroregulation of the vagina and the function and expression of neuropeptides and neurotransmitters, is performed in several vertebrate species, including large farm animals, rodents, domestic fowl and lizards. METHODS: This review summarizes, on a bibliographic basis, the current knowledge on vaginal innervation and function of neuropeptides and neurotransmitters expressed in vaginal nerve fibers in several vertebrate species, including humans. The presence and role played by the local microbioma is also explored. CONCLUSION: A thorough knowledge of the vaginal innervation is necessary to unravel the putative communication of the vaginal microbiome and vaginal nerve fibers, but also to understand the effects of vaginal pathologies and of administered drugs on the neuroregulation of the vagina.


Asunto(s)
Microbiota , Neuronas , Neuropéptidos , Neurotransmisores , Vagina , Animales , Femenino , Humanos , Neuronas/fisiología , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Vagina/inervación , Vagina/metabolismo , Vagina/microbiología , Péptido Intestinal Vasoactivo/metabolismo , Vertebrados/metabolismo
8.
Animals (Basel) ; 12(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552495

RESUMEN

Extracellular adenosine 5'-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system of many species, including laboratory animals, domestic animals, and primates. However, the distribution of the P2X2 receptor in the nervous system of the domestic pig, a species increasingly used as an experimental model, is as yet unknown. Therefore, this study aimed to determine the presence of the P2X2 receptor in the neurons of the enteric nervous system (ENS) of the pig small intestine (duodenum, jejunum, and ileum) by the immunofluorescence method. In addition, the chemical code of P2X2-immunoreactive (IR) ENS neurons of the porcine small intestine was analysed by determining the coexistence of selected neuropeptides, i.e., vasoactive intestinal polypeptide (VIP), substance P (sP), and galanin. P2X2-IR neurons were present in the myenteric plexus (MP), outer submucosal plexus (OSP), and inner submucosal plexus (ISP) of all sections of the small intestine (duodenum, jejunum, and ileum). From 44.78 ± 2.24% (duodenum) to 63.74 ± 2.67% (ileum) of MP neurons were P2X2-IR. The corresponding ranges in the OSP ranged from 44.84 ± 1.43% (in the duodenum) to 53.53 ± 1.21% (in the jejunum), and in the ISP, from 53.10 ± 0.97% (duodenum) to 60.57 ± 2.24% (ileum). Immunofluorescence staining revealed the presence of P2X2-IR/galanin-IR and P2X2-IR/VIP-IR neurons in the MP, OSP, and ISP of the sections of the small intestine. The presence of sP was not detected in the P2X2-IR neurons of any ganglia tested in the ENS. Our results indicate for the first time that the P2X2 receptor is present in the MP, ISP, and OSP neurons of all small intestinal segments in pigs, which may suggest that its activation influences the action of the small intestine. Moreover, there is a likely functional interaction between P2X2 receptors and galanin or VIP, but not sP, in the ENS of the porcine small intestine.

9.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499231

RESUMEN

Vasoactive intestinal peptide (VIP), a member of secretin/glucagon family, is involved in a variety of biological activities such as gut motility, immune responses, and carcinogenesis. In this study, the VIP precursor gene (On-VIP) and its receptor gene VIPR1 (On-VIPR1) were identified from Nile tilapia (Oreochromis niloticus), and the functions of On-VIP in the immunomodulation of Nile tilapia against bacterial infection were investigated and characterized. On-VIP and On-VIPR1 contain a 450 bp and a 1326 bp open reading frame encoding deduced protein of 149 and 441 amino acids, respectively. Simultaneously, the transcript of both On-VIP and On-VIPR1 were highly expressed in the intestine and sharply induced by Streptococcus agalatiae. Moreover, the positive signals of On-VIP and On-VIPR1 were detected in the longitudinal muscle layer and mucosal epithelium of intestine, respectively. Furthermore, both in vitro and in vivo experiments indicated several immune functions of On-VIP, including reduction of P65, P38, MyD88, STAT3, and AP1, upregulation of CREB and CBP, and suppression of inflammation. Additionally, in vivo experiments proved that On-VIP could protect Nile tilapia from bacterial infection and promote apoptosis and pyroptosis. These data lay a theoretical basis for further understanding of the mechanism of VIP guarding bony fish against bacterial infection.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae , Enfermedades de los Peces/genética , Enfermedades de los Peces/prevención & control , Regulación de la Expresión Génica
10.
J Poult Sci ; 59(4): 364-370, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36382060

RESUMEN

Difference of onset of increase of PRL content in the anterior pituitary gland and plasma PRL concentration during the late stage of chicken embryogenesis is well known. To investigate the disagreement, changes in PRL content and PRL mRNA levels, and the effects of vasoactive intestinal polypeptides (VIP) on PRL release and PRL mRNA expression were examined using western blot analysis and real-time PCR quantification. Changes in SPRL content were strongly correlated with PRL mRNA levels. The increase in PRL content on day 17 of incubation may be caused by the increase in PRL mRNA levels on day 16 of incubation. Additionally, the effects of VIP on PRL release from the embryonic anterior pituitary gland were not observed until day 18 of embryogenesis. These results suggest that increased levels of PRL mRNA and PRL content in the anterior pituitary gland are closely correlated. However, the increased expression of PRL mRNA observed on day 17 and the initiation of PRL release from the anterior pituitary gland on day 19 were differentially regulated. According to the results of western blot analysis, the proportion of glycosylated PRL (G-PRL) and non-glycosylated PRL (NG-PRL) in the anterior pituitary gland at the end stage of development differed from the proportion of PRL released from the anterior pituitary gland. According to the results of two-dimensional western blot analysis, no isoforms with different isoelectric points were detected in the culture medium on days 19 and 20. These data suggest that the peptide chains of G-PRL and NG-PRL were not modified. In conclusion, the differentiation of PRL-producing cells and the maturation of the hypothalamus and anterior pituitary gland were completed at the end stage of incubation, and that different factors regulated the initiation of PRL mRNA expression before day 18 of incubation.

11.
J Med Life ; 15(9): 1081-1089, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36415517

RESUMEN

The digestive system has an innate monitoring and defense capacity, which allows the recognition and elimination of different dangerous substances. The complex analysis of the intestinal content comprises the cross-interactions between the epithelial cells, the enteroendocrine cells, the neural tissue and the cellular defense mechanisms. The enteric nervous system, also called "the enteric brain" or "the second brain" is the only neuronal network outside the central nervous system capable of autonomous reflex activity. The enteric nervous system activity is mostly independent of the central nervous system, but not in all aspects. In fact, even the enteral reflexes are a consequence of the bidirectional intestine-brain relation. The central nervous and enteric nervous systems are coupled through the sympathetic and parasympathetic branches of the autonomic nervous system. The gastrointestinal functions are regulated due to the interaction between the intrinsic neurons within the gastrointestinal wall and the extrinsic neurons outside the gastrointestinal tract. Here we provide an overview of the important role of the enteric brain in defensive behavior, as well as its structural and functional particularities that make it a special organ.


Asunto(s)
Sistema Nervioso Entérico , Tracto Gastrointestinal , Humanos , Sistema Nervioso Entérico/fisiología , Neuronas/fisiología , Intestinos , Sistema Nervioso Central
12.
Cell Rep ; 40(11): 111333, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103825

RESUMEN

While dysfunction of the medial prefrontal cortex (mPFC) has been implicated in chronic pain, the underlying neural circuits and the contribution of specific cellular populations remain unclear. Using in vivo Ca2+ imaging, we report that in both male and female mice, peripheral nerve injury-induced neuropathic pain causes a marked reduction of vasoactive intestinal polypeptide (VIP)-expressing interneuron activity in the prelimbic area of the mPFC, which contributes to decreased prefrontal cortical outputs. Moreover, prelimbic glutamatergic projections to GABAergic interneurons in the anterior cingulate cortex (ACC) are diminished, leading to loss of cortical-cortical inhibition and increased pyramidal neuron activity in the ACC. Chemogenetic activation of prelimbic VIP interneurons restores neuronal responses in the mPFC-ACC pathway and attenuates pain-like behaviors in mice. Furthermore, restoration of prelimbic outputs to the ACC reverses nerve injury-induced ACC hyperactivation. These findings reveal mPFC circuit changes associated with neuropathic pain and highlight VIP interneurons as potential therapeutic targets for pain treatment.


Asunto(s)
Neuralgia , Péptido Intestinal Vasoactivo , Animales , Femenino , Giro del Cíngulo/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Neuralgia/metabolismo , Corteza Prefrontal/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
13.
Exp Eye Res ; 224: 109235, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049555

RESUMEN

We previously demonstrated vasoactive intestinal polypeptide (VIP) eyedrops reduce intraocular pressure (IOP) and stabilize cytoskeleton of the Schlemm's canal (SC) endothelium in a chronic ocular hypertension rat model. Here we determine if the trabecular meshwork (TM) releases endogenous VIP and affect SC in paracrine manner, and whether this cellular interaction via VIP is strengthened under stimulated sympathetic activity. A rat model of moderate-intensity exercise was established to stimulate sympathetic activation. IOP post exercise was measured by a rebound tonometer. Sympathetic nerve activity at the TM was immunofluorescence-stained with DßH and PGP9.5. Morphological changes of TM and SC were quantitatively measured by hematoxylin-eosin (HE) staining. Further, epinephrine was applied to mimic sympathetic excitation on primary rat TM cells, and ELISA to measure VIP levels in the medium. The cytoskeleton protective effect of VIP in the epinephrine-stimulated conditioned medium (Epi-CM) was evaluated in oxidative stressed human umbilical vein endothelial cells (HUVECs). Elevated sympathetic nerve activity was found at TM post exercise. Changes accompanying the sympathetic excitation included thinned TM, expanded SC and decreased IOP, which were consistent with epinephrine treatment. Epinephrine decreased TM cell size, enhanced VIP expression and release in the medium in vitro. Epi-CM restored linear F-actin and cell junction integrity in H2O2 treated HUVECs. Blockage of VIP receptor by PG99-465 attenuated the protective capability of Epi-CM. VIP expression was upregulated at TM and the inner wall of SC post exercise in vivo. PG99-465 significantly attenuated exercise-induced SC expansion and IOP reduction. Thus, the sympathetic activation promoted VIP release from TM cells and subsequently expanded SC via stabilizing cytoskeleton, which resulted in IOP reduction.


Asunto(s)
Malla Trabecular , Péptido Intestinal Vasoactivo , Animales , Humanos , Ratas , Actinas/metabolismo , Medios de Cultivo Condicionados/farmacología , Epinefrina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/farmacología , Presión Intraocular , Soluciones Oftálmicas/farmacología , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Malla Trabecular/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/metabolismo
14.
Acta Pharm Sin B ; 12(2): 637-650, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256936

RESUMEN

Receptor activity-modulating proteins (RAMPs) are accessory molecules that form complexes with specific G protein-coupled receptors (GPCRs) and modulate their functions. It is established that RAMP interacts with the glucagon receptor family of GPCRs but the underlying mechanism is poorly understood. In this study, we used a bioluminescence resonance energy transfer (BRET) approach to comprehensively investigate such interactions. In conjunction with cAMP accumulation, Gα q activation and ß-arrestin1/2 recruitment assays, we not only verified the GPCR-RAMP pairs previously reported, but also identified new patterns of GPCR-RAMP interaction. While RAMP1 was able to modify the three signaling events elicited by both glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), and RAMP2 mainly affected ß-arrestin1/2 recruitment by GCGR, GLP-1R and glucagon-like peptide-2 receptor, RAMP3 showed a widespread negative impact on all the family members except for growth hormone-releasing hormone receptor covering the three pathways. Our results suggest that RAMP modulates both G protein dependent and independent signal transduction among the glucagon receptor family members in a receptor-specific manner. Mapping such interactions provides new insights into the role of RAMP in ligand recognition and receptor activation.

15.
Biomedicines ; 10(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35203615

RESUMEN

Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.

16.
Front Cell Neurosci ; 16: 811484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221922

RESUMEN

GABAergic neurons play a crucial role in shaping cortical activity. Even though GABAergic neurons constitute a small fraction of cortical neurons, their peculiar morphology and functional properties make them an intriguing and challenging task to study. Here, we review the basic anatomical features, the circuit properties, and the possible role in the relevant behavioral task of a subclass of GABAergic neurons that express vasoactive intestinal polypeptide (VIP). These studies were performed using transgenic mice in which the VIP-expressing neurons can be recognized using fluorescent proteins and optogenetic manipulation to control (or regulate) their electrical activity. Cortical VIP-expressing neurons are more abundant in superficial cortical layers than other cortical layers, where they are mainly studied. Optogenetic and paired recordings performed in ex vivo cortical preparations show that VIP-expressing neurons mainly exert their inhibitory effect onto somatostatin-expressing (SOM) inhibitory neurons, leading to a disinhibitory effect onto excitatory pyramidal neurons. However, this subclass of GABAergic neurons also releases neurotransmitters onto other GABAergic and non-GABAergic neurons, suggesting other possible circuit roles than a disinhibitory effect. The heterogeneity of VIP-expressing neurons also suggests their involvement and recruitment during different functions via the inhibition/disinhibition of GABAergic and non-GABAergic neurons locally and distally, depending on the specific local circuit in which they are embedded, with potential effects on the behavioral states of the animal. Although VIP-expressing neurons represent only a tiny fraction of GABAergic inhibitory neurons in the cortex, these neurons' selective activation/inactivation could produce a relevant behavioral effect in the animal. Regardless of the increasing finding and discoveries on this subclass of GABAergic neurons, there is still a lot of missing information, and more studies should be done to unveil their role at the circuit and behavior level in different cortical layers and across different neocortical areas.

17.
J Minim Access Surg ; 18(3): 475-477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35046178

RESUMEN

VIPoma is an extremely rare neuroendocrine tumour. Majority of the lesions occur in the pancreas. There is usually a long and recurrent history of secretory diarrhoea. Current diagnostic methods help in diagnosing a VIPoma once it is suspected. We herein report a case of VIPoma which had the delay in diagnosis and presented at an extremely unusual location (pyloroduodenal) who underwent laparoscopic resection for the same.

18.
Environ Sci Pollut Res Int ; 29(6): 8109-8125, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34846667

RESUMEN

Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immunological functions for controlling the homeostasis of the immune system. VIP has been identified as a potent anti-inflammatory factor, in boosting both innate and adaptive immunity. Since December 2019, SARS-Cov-2 was found responsible for the disease COVID-19 which has spread worldwide. No specific therapies or 100% effective vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and several drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir, and tocilizumab. This paper describes the main pharmacological properties of synthetic VIP drug (Aviptadil) which is now under clinical trials. A patented formulation of vasoactive intestinal polypeptide (VIP), named RLF-100 (Aviptadil), was developed and finally got approved for human trials by FDA in 2001 and in European medicines agency in 2005. It was awarded Orphan Drug Designation in 2001 by the US FDA for the treatment of acute respiratory distress syndrome and for the treatment of pulmonary arterial hypertension in 2005. Investigational new drug (IND) licenses for human trials of Aviptadil was guaranteed by both the US FDA and EMEA. Preliminary clinical trials seem to support Aviptadil's benefit. However, such drugs like Aviptadil in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds.


Asunto(s)
COVID-19 , Péptido Intestinal Vasoactivo , Combinación de Medicamentos , Humanos , Fentolamina , SARS-CoV-2
19.
Neuroendocrinology ; 112(9): 904-916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34856551

RESUMEN

BACKGROUND/AIMS: Circadian rhythms in behavior and physiology are programmed by the suprachiasmatic nucleus (SCN) of the hypothalamus. A subset of SCN neurons produce the neuropeptide arginine vasopressin (AVP), but it remains unclear whether AVP signaling influences the SCN clock directly. METHODS: Here, we test that AVP signaling acting through V1A and V1B receptors influences molecular rhythms in SCN neurons. V1 receptor agonists were applied ex vivo to PERIOD2::LUCIFERASE SCN slices, allowing for real-time monitoring of changes in molecular clock function. RESULTS: V1A/B agonists reset the phase of the SCN molecular clock in a time-dependent manner, with larger magnitude responses by the female SCN. Further, we found evidence that both Gαq and Gαs signaling pathways interact with V1A/B-induced SCN resetting, and that this response requires vasoactive intestinal polypeptide (VIP) signaling. CONCLUSIONS: Collectively, this work indicates that AVP signaling resets SCN molecular rhythms in conjunction with VIP signaling and in a manner influenced by sex. This highlights the utility of studying clock function in both sexes and suggests that signal integration in central clock circuits regulates emergent properties important for the control of daily rhythms in behavior and physiology.


Asunto(s)
Relojes Circadianos , Péptido Intestinal Vasoactivo , Arginina Vasopresina/metabolismo , Ritmo Circadiano/fisiología , Femenino , Humanos , Masculino , Núcleo Supraquiasmático/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Vasopresinas/metabolismo
20.
J Anat ; 240(3): 528-540, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34642936

RESUMEN

Sex differences in behaviour partly arise from the sexual dimorphism of brain anatomy between males and females. However, the sexual dimorphism of the tree shrew brain is unclear. In the present study, we examined the detailed distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-ir) neurons and fibres in the suprachiasmatic nucleus (SCN) and VIP-ir fibres in the bed nucleus of the stria terminalis (BST) of male and female tree shrews. The overall volume of the SCN in male tree shrews was comparable with that in females. However, males showed a significantly higher density of VIP-ir cells and fibres in the SCN than females. The shape of the VIP-stained area in coronal sections was arched, elongated or oval in the lateral division (STL) and the anterior part of the medial division (STMA) of the BST and oval or round in the posterior part of the medial division of the BST (STMP). The volume of the VIP-stained BST in male tree shrews was similar to that in females. The overall distribution of VIP-ir fibres was similar between the sexes throughout the BST except within the STMA, where darkly stained fibres were observed in males, whereas lightly stained fibres were observed in females. Furthermore, male tree shrews showed a significantly higher intensity of Nissl staining in the medial preoptic area (MPA) and the ventral part of the medial division of the BST than females. These findings are the first to reveal sexual dimorphism in the SCN, BST and MPA of the tree shrew brain, providing neuroanatomical evidence of sexual dimorphism in these regions related to their roles in sex differences in physiology and behaviour.


Asunto(s)
Área Preóptica , Núcleos Septales , Animales , Femenino , Inmunohistoquímica , Masculino , Caracteres Sexuales , Núcleo Supraquiasmático , Tupaiidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA