Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.281
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39319569

RESUMEN

The extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g. faces, scenes, and tools). Although food is primarily distinguished from other objects by its edibility, not its appearance, recent evidence suggests that there is also food selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with hands. In this context, food items share many properties with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted functional MRI and behavioral experiments to test this hypothesis. We found that graspable food items and tools were judged to be similar in their action-related properties and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food selectivity may reflect the behavioral affordances of food items rather than a distinct form of category selectivity.


Asunto(s)
Alimentos , Imagen por Resonancia Magnética , Corteza Visual , Humanos , Corteza Visual/fisiología , Femenino , Masculino , Adulto Joven , Adulto , Estimulación Luminosa/métodos , Fuerza de la Mano/fisiología , Mapeo Encefálico/métodos , Desempeño Psicomotor/fisiología , Reconocimiento Visual de Modelos/fisiología
2.
Curr Biol ; 34(18): 4184-4196.e7, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39255789

RESUMEN

Human primary visual cortex (V1) responds more strongly, or resonates, when exposed to ∼10, ∼15-20, and ∼40-50 Hz rhythmic flickering light. Full-field flicker also evokes the perception of hallucinatory geometric patterns, which mathematical models explain as standing-wave formations emerging from periodic forcing at resonant frequencies of the simulated neural network. However, empirical evidence for such flicker-induced standing waves in the visual cortex was missing. We recorded cortical responses to flicker in awake mice using high-spatial-resolution widefield imaging in combination with high-temporal-resolution glutamate-sensing fluorescent reporter (iGluSnFR). The temporal frequency tuning curves in the mouse V1 were similar to those observed in humans, showing a banded structure with multiple resonance peaks (8, 15, and 33 Hz). Spatially, all flicker frequencies evoked responses in V1 corresponding to retinotopic stimulus location, but some evoked additional peaks. These flicker-induced cortical patterns displayed standing-wave characteristics and matched linear wave equation solutions in an area restricted to the visual cortex. Taken together, the interaction of periodic traveling waves with cortical area boundaries leads to spatiotemporal activity patterns that may affect perception.


Asunto(s)
Corteza Visual Primaria , Animales , Ratones , Corteza Visual Primaria/fisiología , Masculino , Estimulación Luminosa , Ratones Endogámicos C57BL , Femenino , Percepción Visual/fisiología , Corteza Visual/fisiología
3.
Cell Rep ; 43(9): 114763, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288028

RESUMEN

Recent studies have found dramatic cell-type-specific responses to stimulus novelty, highlighting the importance of analyzing the cortical circuitry at this granularity to understand brain function. Although initial work characterized activity by cell type, the alterations in cortical circuitry due to interacting novelty effects remain unclear. We investigated circuit mechanisms underlying the observed neural dynamics in response to novel stimuli using a large-scale public dataset of electrophysiological recordings in behaving mice and a population network model. The model was constrained by multi-patch synaptic physiology and electron microscopy data. We found generally weaker connections under novel stimuli, with shifts in the balance between somatostatin (SST) and vasoactive intestinal polypeptide (VIP) populations and increased excitatory influences on parvalbumin (PV) and SST populations. These findings systematically characterize how cortical circuits adapt to stimulus novelty.

4.
J Neurophysiol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292873

RESUMEN

Neurons in primary visual cortex (area V1) adapt in varying degrees to the average contrast of the environment, suggesting that the representation of visual stimuli may interact with the state of cortical gain control in complex ways. To investigate this possibility, we measured and analyzed the responses of neural populations in mouse V1 to visual stimuli as a function of contrast in different environments, each characterized by a unique distribution of contrast values. Our findings reveal that, for a fixed stimulus, the population response can be described by a vector function r(gec), where the gain ge is a decreasing function of the mean contrast of the environment. Thus, gain control can be viewed as a reparameterization of a population response curve, which is invariant across environments. Different stimuli are mapped to distinct curves, all originating from a common origin, corresponding to a zero-contrast response. Altogether, our findings provide a straightforward, geometric interpretation of contrast gain control at the population level and show that changes in gain are well-matched among members of a population.

5.
Elife ; 132024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297605

RESUMEN

In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.


Asunto(s)
Callithrix , Neuronas GABAérgicas , Vectores Genéticos , Interneuronas , Parvalbúminas , Animales , Parvalbúminas/metabolismo , Parvalbúminas/genética , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Dependovirus/genética , Corteza Visual Primaria/metabolismo , Expresión Génica , Transgenes , Corteza Visual/metabolismo , Corteza Visual/fisiología , Corteza Visual/virología
6.
Vision Res ; 224: 108484, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260230

RESUMEN

Many of the objects we encounter in our everyday environments would be hard to recognize without any expectations about these objects. For example, a distant silhouette may be perceived as a car because we expect objects of that size, positioned on a road, to be cars. Reflecting the influence of such expectations on visual processing, neuroimaging studies have shown that when objects are poorly visible, expectations derived from scene context facilitate the representations of these objects in visual cortex from around 300 ms after scene onset. The current magnetoencephalography (MEG) study tested whether this facilitation occurs independently of attention and task relevance. Participants viewed degraded objects alone or within scene context while they either attended the scenes (attended condition) or the fixation cross (unattended condition), also temporally directing attention away from the scenes. Results showed that at 300 ms after stimulus onset, multivariate classifiers trained to distinguish clearly visible animate vs inanimate objects generalized to distinguish degraded objects in scenes better than degraded objects alone, despite the added clutter of the scene background. Attention also modulated object representations at this latency, with better category decoding in the attended than the unattended condition. The modulatory effects of context and attention were independent of each other. Finally, data from the current study and a previous study were combined (N = 51) to provide a more detailed temporal characterization of contextual facilitation. These results extend previous work by showing that facilitatory scene-object interactions are independent of the specific task performed on the visual input.

7.
Front Psychiatry ; 15: 1433239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252757

RESUMEN

Objective: Previous studies have found that patients with Major Depressive Disorder (MDD) exhibit impaired visual motion perception capabilities, and multi-level abnormalities in the human middle temporal complex (MT+), a key brain area for processing visual motion information. However, the brain activity pattern of MDD patients during the perception of visual motion information is currently unclear. In order to study the effect of depression on the activity and functional connectivity (FC) of MT+ during the perception of visual motion information, we conducted a study combining task-state fMRI and psychophysical paradigm to compare MDD patients and healthy control (HC). Methods: Duration threshold was examined through a visual motion perception psychophysical experiment. In addition, a classic block-design grating motion task was utilized for fMRI scanning of 24 MDD patients and 25 HC. The grating moved randomly in one of eight directions. We examined the neural activation under visual stimulation conditions compared to the baseline and FC. Results: Compared to HC group, MDD patients exhibited increased duration threshold. During the task, MDD patients showed decreased beta value and percent signal change in left and right MT+. In the sample comprising MDD and HC, there was a significant negative correlation between beta value in right MT+ and duration threshold. And in MDD group, activation in MT+ were significantly correlated with retardation score. Notably, no such differences in activation were observed in primary visual cortex (V1). Furthermore, when left MT+ served as the seed region, compared to the HC, MDD group showed increased FC with right calcarine fissure and surrounding cortex and decreased FC with left precuneus. Conclusion: Overall, the findings of this study highlight that the visual motion perception function impairment in MDD patients relates to abnormal activation patterns in MT+, and task-related activity are significantly connected to the retardation symptoms of the disease. This not only provides insights into the potential neurobiological mechanisms behind visual motion perception disorder in MDD patients from the aspect of task-related brain activity, but also supports the importance of MT+ as a candidate biomarker region for MDD.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39237776

RESUMEN

While executive functions (EFs) have traditionally been linked to the cerebral cortex, our understanding of EFs has evolved with increasing evidence pointing to the involvement of cortico-subcortical networks. Despite the importance of investigating EFs within this broader context, the functional contributions of subcortical regions to these processes remain largely unexplored. This study addresses this gap by specifically examining the involvement of subcortical regions in executive inhibition, as measured by the classic Eriksen flanker task. In this study, we used a stereoscope to differentiate between subcortical (monocular) and cortical (mostly binocular) visual pathways in EF processes. Our findings indicate that monocular visual pathways play a crucial role in representing executive conflict, which necessitates cortical involvement. The persistence of a monoptic advantage in conflict representation highlights the substantial contribution of subcortical regions to these executive processes. This exploration of subcortical involvement in executive inhibition provides valuable insights into the intricate relationships between cortical and subcortical regions in EFs.

9.
Cell Rep ; 43(9): 114701, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244753

RESUMEN

Balancing plasticity and stability in neural circuits is essential for an animal's ability to learn from its environment while preserving proper processing and perception of sensory information. However, unlike the mechanisms that drive plasticity in neural circuits, the activity-induced molecular mechanisms that convey functional stability remain poorly understood. Focusing on the visual cortex of adult mice and combining transcriptomics, electrophysiology, and in vivo calcium imaging, we find that the daily appearance of light induces, in excitatory neurons, a large gene program along with rapid and transient increases in the ratio of excitation and inhibition (E/I ratio) and neural activity. Furthermore, we find that the light-induced transcription factor NPAS4 drives these daily normalizations of the E/I ratio and neural activity rates and that it stabilizes the neurons' response properties. These findings indicate that daily sensory-induced transcription normalizes the E/I ratio and drives downward firing rate homeostasis to maintain proper sensory processing and perception.

10.
Elife ; 122024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234821

RESUMEN

Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While many studies have investigated how color information is processed in visual brain areas of primate species, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of 'predatory'-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species.


Asunto(s)
Visión de Colores , Corteza Visual , Animales , Ratones , Visión de Colores/fisiología , Corteza Visual/fisiología , Percepción de Color/fisiología , Estimulación Luminosa , Ratones Endogámicos C57BL , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Masculino
11.
Artículo en Inglés | MEDLINE | ID: mdl-39266871

RESUMEN

PURPOSE OF REVIEW: Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions. RECENT FINDINGS: Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer's disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity. Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.

12.
Prog Neurobiol ; 240: 102657, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103115

RESUMEN

Accurate definition of the borders of cortical visual areas is essential for the study of neuronal processes leading to perception. However, data used for definition of areal boundaries have suffered from issues related to resolution, uniform coverage, or suitability for objective analysis, leading to ambiguity. Here, we present a novel approach that combines widefield optical imaging, presentation of naturalistic movies, and encoding model analysis, to objectively define borders in the primate extrastriate cortex. We applied this method to test conflicting hypotheses about the third-tier visual cortex, where areal boundaries have remained controversial. We demonstrate pronounced tuning preferences in the third-tier areas, and an organizational structure in which the dorsomedial area (DM) contains representations of both the upper and lower contralateral quadrants, and is located immediate anterior to V2. High-density electrophysiological recordings with a Neuropixels probe confirm these findings. Our encoding-model approach offers a powerful, objective way to disambiguate areal boundaries.


Asunto(s)
Callithrix , Corteza Visual , Animales , Corteza Visual/fisiología , Callithrix/fisiología , Estimulación Luminosa/métodos , Mapeo Encefálico , Masculino , Imagen Óptica , Femenino
13.
J Hist Neurosci ; : 1-23, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186639

RESUMEN

Jean-Martin Charcot, often lauded for his seminal contributions, is seldom critiqued for his blunders. One such blunder was his double-semidecussation scheme for the retinocortical visual pathways, proposed in 1875 to explain, on neuroanatomic grounds, cases of hysteria that manifest hysterical amblyopia accompanied with ipsilateral hemianaesthesia. Charcot's scheme was inconsistent with the older, broadly correct scheme of Prussian ophthalmologist Albrecht von Gräfe. Charcot failed to perform clinicopathologic correlation studies. His analysis relied on a series of mistaken conclusions he made in conjunction with Swiss-French ophthalmologist Edmund Landolt: (1) only an optic tract lesion could produce a homonymous hemianopsia; (2) cerebral lesions, if they ever produced homonymous hemianopsia, did so by secondary effects (e.g. pressure) on the optic tracts; and (3) damage to the cortical projections from the lateral geniculate produces a crossed amblyopia. Challenges to Charcot's theory came from within France by 1880. By 1882, Charcot recognized that his scheme was erroneous, and he approved a thesis by his pupil Charles Féré that reverted to Gräfe's scheme with an ill-conceived modification to accommodate Charcot's concept of hysterical cerebral amblyopia. A critique by American neurologist Moses Starr in 1884 argued for Gräfe's scheme and refuted Charcot's erroneous scheme and its subsequent derivatives.

14.
Proc Natl Acad Sci U S A ; 121(35): e2318841121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172780

RESUMEN

Visual cortical neurons show variability in their responses to repeated presentations of a stimulus and a portion of this variability is shared across neurons. Attention may enhance visual perception by reducing shared spiking variability. However, shared variability and its attentional modulation are not consistent within or across cortical areas, and depend on additional factors such as neuronal type. A critical factor that has not been tested is actual anatomical connectivity. We measured spike count correlations among pairs of simultaneously recorded neurons in the primary visual cortex (V1) for which anatomical connectivity was inferred from spiking cross-correlations. Neurons were recorded in monkeys performing a contrast-change discrimination task requiring covert shifts in visual spatial attention. Accordingly, spike count correlations were compared across trials in which attention was directed toward or away from the visual stimulus overlapping recorded neuronal receptive fields. Consistent with prior findings, attention did not significantly alter spike count correlations among random pairings of unconnected V1 neurons. However, V1 neurons connected via excitatory synapses showed a significant reduction in spike count correlations with attention. Interestingly, V1 neurons connected via inhibitory synapses demonstrated high spike count correlations overall that were not modulated by attention. Correlated variability in excitatory circuits also depended upon neuronal tuning for contrast, the task-relevant stimulus feature. These results indicate that shared variability depends on the type of connectivity in neuronal circuits. Also, attention significantly reduces shared variability in excitatory circuits, even when attention effects on randomly sampled neurons within the same area are weak.


Asunto(s)
Atención , Macaca mulatta , Neuronas , Animales , Atención/fisiología , Neuronas/fisiología , Percepción Visual/fisiología , Corteza Visual/fisiología , Masculino , Estimulación Luminosa , Corteza Visual Primaria/fisiología , Potenciales de Acción/fisiología , Sinapsis/fisiología
15.
Cell Rep ; 43(8): 114639, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167488

RESUMEN

A key feature of neurons in the primary visual cortex (V1) of primates is their orientation selectivity. Recent studies using deep neural network models showed that the most exciting input (MEI) for mouse V1 neurons exhibit complex spatial structures that predict non-uniform orientation selectivity across the receptive field (RF), in contrast to the classical Gabor filter model. Using local patches of drifting gratings, we identified heterogeneous orientation tuning in mouse V1 that varied up to 90° across sub-regions of the RF. This heterogeneity correlated with deviations from optimal Gabor filters and was consistent across cortical layers and recording modalities (calcium vs. spikes). In contrast, model-synthesized MEIs for macaque V1 neurons were predominantly Gabor like, consistent with previous studies. These findings suggest that complex spatial feature selectivity emerges earlier in the visual pathway in mice than in primates. This may provide a faster, though less general, method of extracting task-relevant information.


Asunto(s)
Corteza Visual Primaria , Animales , Ratones , Corteza Visual Primaria/fisiología , Orientación/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Luminosa , Masculino , Campos Visuales/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Primates
16.
J Alzheimers Dis ; 101(1): 111-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121131

RESUMEN

Background: While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective: We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods: c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results: Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions: Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos , Sinapsis , Animales , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Sinapsis/patología , Sinapsis/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratones , Masculino , Femenino , Corteza Visual/metabolismo , Corteza Visual/patología , Ratones Endogámicos C57BL
17.
Neuron ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137776

RESUMEN

The role of experience in the organization of cortical feedback (FB) remains unknown. We measured the effects of manipulating visual experience on the retinotopic specificity of supragranular and infragranular projections from the lateromedial (LM) visual area to layer (L)1 of the mouse primary visual cortex (V1). LM inputs were, on average, retinotopically matched with V1 neurons in normally and dark-reared mice, but visual exposure reduced the fraction of spatially overlapping inputs to V1. FB inputs from L5 conveyed more surround information to V1 than those from L2/3. The organization of LM inputs from L5 depended on their orientation preference and was disrupted by dark rearing. These observations were recapitulated by a model where visual experience minimizes receptive field overlap between LM inputs and V1 neurons. Our results provide a mechanism for the dependency of surround modulations on visual experience and suggest how expected interarea coactivation patterns are learned in cortical circuits.

18.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091722

RESUMEN

Circular RNAs (circRNAs) are noncoding RNAs abundant in brain tissue, and many are derived from activity-dependent, linear mRNAs encoding for synaptic proteins, suggesting that circRNAs may directly or indirectly play a role in regulating synaptic development, plasticity, and function. However, it is unclear if the circular forms of these RNAs are similarly regulated by activity and what role these circRNAs play in developmental plasticity. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of developmental plasticity. Among the differentially expressed mRNAs and circRNAs following 3-day MD, the circular and the activity-dependent linear forms of the Homer1 gene, circHomer1 and Homer1a respectively, were of interest as their expression changed in opposite directions: circHomer1 expression increased while the expression of Homer1a decreased following MD. Knockdown of circHomer1 prevented the depression of closed-eye responses normally observed after 3-day MD. circHomer1-knockdown led to a reduction in average dendritic spine size prior to MD, but critically there was no further reduction after 3-day MD, consistent with impaired structural plasticity. circHomer1-knockdown also prevented the reduction of surface AMPA receptors after 3-day MD. Synapse-localized puncta of the AMPA receptor endocytic protein Arc increased in volume after MD but were smaller in circHomer1-knockdown neurons, suggesting that circHomer1 regulates plasticity through mechanisms of activity-dependent AMPA receptor endocytosis. Thus, activity-dependent circRNAs regulate developmental synaptic plasticity, and our findings highlight the essential role of circHomer1 in V1 plasticity induced by short-term MD.

19.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106175

RESUMEN

Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.


Asunto(s)
Corteza Cerebral , Sinapsis , Microscopía Electrónica de Volumen , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Cerebral/ultraestructura , Espinas Dendríticas/ultraestructura , Imagenología Tridimensional/métodos , Sinapsis/ultraestructura
20.
J Neurosci Res ; 102(8): e25375, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105520

RESUMEN

Using anti-neurofilament H non-phosphorylated antibodies (SMI-32) as markers for the neuronal maturation level and Y channel responsible for motion processing, we investigated early postnatal development of the primary visual areas 17 and 18 in cats aged 0, 10, 14, and 34 days and in adults. Two analyzed parameters of SMI-32-immunolabeling were used: the total proportion of SMI-32-labeling and the density of labeled neurons. (i) The developmental time course of the total proportion of SMI-32-labeling shows the general increase in the accumulation of heavy-chain neurofilaments. This parameter showed a different time course for cortical layer development; the maximal increment in the total labeling in layer V occurred between the second and fifth postnatal weeks and in layers II-III and VI after the fifth postnatal week. In addition, the delay in accumulation of SMI-32-labeling was shown in layer V of the area 17 periphery representation during the first two postnatal weeks. (ii) The density of SMI-32-labeled neurons decreased in all layers of area 18, but was increased, decreased, or had a transient peak in layers II-III, V, and VI of area 17, respectively. The transient peak is in good correspondence with some transient neurochemical features previously revealed for different classes of cortical and thalamic neurons and reflects the time course of the early development of the thalamocortical circuitry. Some similarities between the time courses for the development of SMI-32-labeling in areas 17/18 and in A- and C-laminae of the LGNd allow us to propose heterochronous postnatal development of two Y sub-channels.


Asunto(s)
Animales Recién Nacidos , Proteínas de Neurofilamentos , Neuronas , Animales , Gatos , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo , Corteza Visual Primaria/crecimiento & desarrollo , Corteza Visual Primaria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA