RESUMEN
The ideal photoelectrode and efficient signaling strategy are pivotal to achieve sensitive photoelectrochemical (PEC) analysis. Here, a multipath collaborative signal amplification-based PEC immunosensor was constructed for the ultrasensitive detection of cytokeratin 19 fragment 21-1. Specifically, the photoelectrode fabricated by Z-scheme In2O3/g-C3N4 heterojunction showed enhanced photocurrent intensity in response to visible light. Meanwhile, the signal probe, horseradish peroxidase functionalized dopamine-melanin nanosphere@Au nanoparticles (HRP-Dpa-melanin NS@AuNPs), were introduced into the system. When the target exists, the signal probe can induce multiple quenching of the photocurrent due to the competition of light absorption, steric hindrance and HRP-mediated biocatalytic precipitation, which effectively inhibit light, electron donor, and electron access to the photoelectrode. The fabricated immunosensor exhibits a wide linear range from 1.0 × 10-3 - 1.0 × 102 ng mL-1 with the detection limit of 0.35 pg mL-1 (S/N = 3) for cytokeratin 19 fragment 21-1 detection. The study enhances sensitivity for PEC detection by utilizing the superior Z-scheme heterojunction photoelectrode, providing a valuable method that combines multiple signal pathways for a synergistic effect in bioanalysis.
Asunto(s)
Técnicas Electroquímicas , Indio , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Humanos , Indio/química , Nitrilos/química , Procesos Fotoquímicos , Electrodos , Límite de Detección , Queratina-19/análisis , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Oro/química , Compuestos de Nitrógeno/química , Grafito/química , Peroxidasa de Rábano Silvestre/químicaRESUMEN
The photocatalytic efficiency can be improved by constructing a Z-scheme heterojunction, but hindered by the only half utilization efficiency of photogenerated carriers. Thus, a novel material, UiO-66-NH2@TAPB-BTCA-COP-Ag (U6N@COP-Ag), with surface plasmon resonance (SPR) effect synergistic Z-scheme heterostructure has been prepared by depositing Ag nanoparticles (Ag NPs) on TAPB-BTCA-COP (COP)-coated UiO-66-NH2. The deposited Ag NPs expand the range of light absorption and introduce more photogenerated electrons in the composite. The SPR effect of noble metal compensates for the limited utilization of the Z-scheme heterojunction photogenerated carriers and the increased density of semiconductor carriers at the reducing end, which is more conducive to the redox reaction of the catalyst. Without sacrificial agents, U6N@COP-Ag shows great photocatalytic nitrogen reduction conversion efficiency with the rate of NH4+ in ammonia water at 167.63µmol g-1h-1, which is 6.6 and 2.8 times that of the original UiO-66-NH2 and COP, respectively. In-situ XPS and Kelvin probe technology verify that UiO-66-NH2 and Ag nanoparticles provide more photogenerated electrons to COP. The cleavage and conversion of N2 to NH4+ on U6N@COP-Ag was confirmed by the enhancement of NH bonds and NH4+ characteristic absorption peaks in the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). This work presents a great method to improve the Z-scheme heterojunction photogenerated carrier utilization and the density of semiconductor carriers at the reducing end by the noble metal SPR effect, which is more conducive to enhance the redox reaction of the catalyst.
RESUMEN
Photocatalytic water splitting technology for H2 production represents a promising and sustainable approach to clean energy generation. In this study, a high concentration of oxygen vacancies was introduced into tungsten trioxide (WO3) to create a vacancy-rich layer. This modified WO3 (WO3-x) was then combined with N-doped Zn0.6Cd0.4S through a hydrothermal synthesis, resulting in the formation of a Z-scheme heterojunction composite aimed at enhancing photocatalytic performance. Under visible light, the H2 production activity of the composite reached an impressive 8.52 mmol·g-1 without adding co-catalyst Pt. This corresponds to enhancements of 7.82 and 4.39 times the production yield of pure ZCS and ZCSN, respectively. However, the hydrogen production increased to 21.98 mmol·g-1 when Pt was added as a co-catalyst. Furthermore, an array of characterizations were employed to elucidate the presence of oxygen vacancies and the establishment of the Z-scheme heterojunction. This structural enhancement significantly facilitates the utilization of photo-generated electrons while effectively preventing photo-corrosion of ZCSN, thus improving material stability. Our study provides a new scheme for the incorporation of oxygen-rich vacancy and the construction of Z-scheme heterojunction, demonstrating a synergistic effect that greatly advances photocatalytic performance.
RESUMEN
Photocatalytic splitting of the Cß-O bond is regarded as a prospective strategy for transforming lignin, and it is imperative to develop novel photocatalysts with effective photogenerated charges separation and solar absorption capacity. Herein, a novel hollow ZIF-8/CdS heterostructure photocatalyst was synthesized for the catalytic splitting of lignin Cß-O bonds. The photocatalytic cleavage rate of Cß-O bond of ligin ß-O-4 reached 30.3âmmolâh-1âg-1 within 20 min under visible light exposure. It is noteworthy that the utilization of intricate natural lignin molecules in this photocatalytic system has yielded successful depolymerization. The DFT and XPS results indicate a potential unidirectional electron migration from ZIF-8 to CdS in ZIF-8/CdS composites transfer. This electron transport path follows the direct Z-scheme heterostructure mechanism, resulting in the generation of an internal electric field between ZIF-8 and CdS. Impressively, the synergistic combination of the hollow structure and Z-scheme heterostructure effectively enhances the efficiency of charge carrier separation and maintains a robust redox potential, thereby facilitating Cα-radical generation. This study proposes a novel photocatalyst design strategy that integrates hollow structures and Z-scheme heterojunctions, with the aim of targeting the depolymerization of the Cß-O bond in lignin.
RESUMEN
The urgent need to mitigate water pollution and achieve Sustainable Development Goal 14 (SDG 14)-Life below water, necessitates developing efficient and eco-friendly wastewater treatment technologies. This research addresses this challenge by photocatalytic degradation of terephthalic acid, a precursor for PET bottles using environment-friendly and biocompatible photocatalysts. The 1D/2D nanocomposite comprising zinc oxide (ZnO) nanorods and functionalized graphitic carbon nitride (Zn-TG) nanosheets were synthesized and thoroughly characterized. The nanocomposite effectively mitigated the individual drawbacks of Zn-TG agglomeration and the wide band gap of ZnO as confirmed through zeta potential and Tauc's plot studies, respectively. The synthesized nanocomposite achieved ~100 % degradation within 60â minutes, exhibiting superior kinetics (~2.5 times) compared to pristine samples. The enhanced degradation efficiency was elucidated by efficient charge carrier transfer (~5 times faster) and separation (~2 times improved) as confirmed through electrochemical impedance spectroscopy and time-resolved photoluminescence studies. The proposed Z-scheme pathway provides mechanistic insights. This proposed mechanism is supported by extensive electron paramagnetic resonance (EPR) and scavenger studies. The liquid chromatography-mass spectrometry (LC-MS) analysis confirms the formation of less toxic byproducts for ensuring that the wastewater treatment process is efficient and environmentally friendly. This research helps in developing a highly effective and sustainable wastewater treatment technology.
RESUMEN
Cadmium sulfide (CdS) based heterojunctions, including type-II, Z-scheme, and S-scheme systems emerged as promising materials for augmenting photocatalytic hydrogen (H2) generation from water splitting. This review offers an exclusive highlight of their fundamental principles, synthesis routes, charge transfer mechanisms, and performance properties in improving H2 production. We overview the crucial roles of Type-II heterojunctions in enhancing charge separation, Z-scheme heterojunctions in promoting redox potentials to reduce electron-hole (e-/h+) pairs recombination, and S-scheme heterojunctions in combining the merits of both type-II and Z-scheme frameworks to obtain highly efficient H2 production. The importance of this review is demonstrated by its thorough comparison of these three configurations, presenting valuable insights into their special contributions and capability for augmenting photocatalytic H2 activity. Additionally, key challenges and prospects in the practical applications of CdS-based heterojunctions are addressed, which provides a comprehensive route for emerging research in achieving sustainable energy goals.
RESUMEN
Ternary ZnS/ZnO/graphitic carbon nitride (gCN) photocatalysts were prepared by coupling gCN sheets with ZnO nanorods under solvothermal conditions followed by sulfurization using Na2S. SEM and TEM analyses show that small-sized ZnS particles (ca. 7.2 nm) deposit homogeneously on the surface of ZnO/gCN nanohybrids. Photoluminescence and electrochemical impedance spectroscopy show that ZnS allows for an enhanced charge separation efficiency as well as prolonged lifetime of photogenerated charge carriers, leading to improved hydrogen photoproduction under UV light irradiation compared to ZnO/gCN. Moreover, the deposition of ZnS nanoparticles improves the photostability of the ZnS/ZnO/gCN catalyst for hydrogen production. A double Z-scheme mechanism is proposed for hydrogen photoproduction using the ZnS/ZnO/gCN heterojunction.
RESUMEN
The Z-scheme heterojunction has been demonstrated to be effective in tuning the photocatalytic performance of photocatalysts. However, there is still a lack of quantitative and in-depth research on how the Z-scheme heterojunction affects the concentration of surface-reaching photoexcited charges. Here, by combining time-resolved spectroscopies and kinetic analysis, the concentration of surface-reaching photoholes (Ch+(surf)) within g-C3N4/TiO2 Z-scheme heterojunctions was quantitatively analyzed for the first time. Quantitative measurements reveal that Ch+(surf) of the prepared Z-scheme photocatalysts is highly dependent on the g-C3N4 content and the induced Z-scheme heterojunctions at the g-C3N4/TiO2 interface. Encouragingly, we found that a properly engineered Z-scheme heterojunction with close coupling of g-C3N4 and TiO2 can significantly increase the Ch+(surf), leading to nearly a 1.7-fold increase compared with pristine TiO2 samples. Furthermore, a distinct hole trap state-mediated Z-scheme charge transfer mechanism was uncovered in which the intrinsic interface defects at the g-C3N4/TiO2 junction act as hole traps, accelerating interface electron-hole recombination, thereby boosting spatial charge separation and ultimately enriching the Ch+(surf). This work provides insights into understanding and controlling electron pathways and Ch+(surf) in Z-scheme photocatalysis, with implications for the screening of different types of direct Z-scheme photocatalysts.
RESUMEN
Novel Bi19Cl3S27/Bi2MoO6 (BCS/BMO) Z-type heterojunctions were synthesized using a straightforward hydrothermal method. Benefiting from the large specific surface area (62.41 m2/g) and the effective separation of photogenerated carriers facilitated by the Z-scheme heterojunction, the BCS/BMO exhibited remarkable improved photocatalytic tetracycline degradation and Cr(VI) reduction efficiency in comparison to BCS, BMO, and their physical mixture. Specifically, the photocatalytic degradation rate constants for TC and Cr(VI) are 0.0209 and 0.0218 min-1, respectively, which are 16.08 and 15.57 times those of BCS, 1.74 and 1.31 times those of BMO, and 2.4 and 1.73 times those of the physical mixture. Additionally, based on density functional theory (DFT) calculations and empirical data, three potential photocatalytic pathways of tetracycline were presented. This study presents a novel approach for designing and synthesizing high-efficiency Z-scheme photocatalysts for the degradation of TC and the reduction of Cr(VI) in wastewater.
RESUMEN
The realization of fast carrier transport can effectively enhance photocatalytic performance. A core-shell structure of ZnO and In2O3 is successfully constructed by using MIL-68 (In) and ZIF-8 as a substrate, forming a heterojunction. This MOF-derived core-shell heterojunction inherits the advantages of ZIF-8, with pores facilitating carriers transfer to the surface for reactions and a large specific surface area providing more active sites. This Z-scheme heterojunction of ZnO and In2O3 can effectively separate and improve the utilization of photogenerated carriers. The well-designed interface of the core-shell structure achieves the rapid transfer of photogenerated carriers. The photocatalytic degradation capability of ZnO@ In2O3 is enhanced by the synergistic effect of Z-scheme heterojunction and core-shell structure. This work provides insight into the investigation of constructing core-shell heterojunctions.
RESUMEN
Dibutyl phthalate (DBP), a common and outstanding plasticizer, exhibits estrogenic, mutagenic, carcinogenic, and teratogenic properties. It is easily liberated from plastic materials and pollutes aquatic ecosystems, endangering human health. Therefore, highly sensitive and selective DBP detection methods are necessary. In this work, a free-of-electronic sacrificial agent photoelectrochemical (PEC) aptasensor for DBP detection was constructed using a novel Z-scheme Bi-doped BiOI/Bi2S3 (Bi-BIS) p-n heterojunction. The Bi-BIS composites had higher visible-light absorption, charge transfer, and separation efficiency. This is attributed to the synergistic effect of the formation of Z-scheme p-n heterojunction between BiOI and Bi2S3, the plasma resonance effect of metallic Bi and photosensitization of Bi2S3, thus exhibiting large and stable photocurrent response in the absence of electron sacrificial agent, that was 10.4 and 6.4 times higher than that of BiOI and Bi2S3, respectively. Then, a DBP PEC aptasensor was constructed by modifying the DBP aptamer on the surface of the ITO/Bi-BIS electrode. The aptasensor demonstrated a broad linear range (2-500 pM) and a low detection limit (0.184 pM). What's more, because there is no interference from electronic sacrificial agent, the aptasensor exhibited excellent selectivity in real water samples. Therefore, the proposed PEC has considerable potential for DBP monitoring.
RESUMEN
One of the most important environmental challenges that needs to be resolved is the industrial discharge of synthetic dyes. Graphitic carbon nitride (g-C3N4), Titanium dioxide (TiO2) and flower-like copper oxide (CuO)/copper cobaltite (CuCo2O4) nanocomposites were synthesized in order to synthesis an effective visible light driven photocatalyst that could degrade Rhodamin B (Rh.B) dye under simulated solar light irradiation. The SEM and TEM results verifies that the flower-like CuO/CuCo2O4 (CCO) structure and g-C3N4/TiO2 (g-CN/TO) generated a smart hybrid structure with superior g-CN distribution. According to the photocatalytic studies, g- C3N4/TiO2/CuO/CuCo2O4 (g-CN/TO/CCO) shows good photodegradation of Rh.B dye (99.9%) in minmal times (1 h) in CCO: g-CN/TO (2:1) ratio by Z-Scheme mechanism. The enhanced visible light absorption and effective electron-hole pair separation provided by the synergistic dispersion of CuO/CuCo2O4 and g-C3N4 can be attributed to the improved photocatalytic performances. These novel insights into g-CN/TO/CCO based photocatalysts are useful for treating industrial effluent.
RESUMEN
Recently, microplastics (MPs) have garnered significant attention as a challenging emerging pollutant to address. Here, a full-spectrum light-driven Fe-doping BiO2-x/BiOI (FBI) Z-scheme heterojunction was constructed for efficiently degrading MPs in waters. Compared with BiO2-x, Fe doping BiO2-x, and BiOI, the optimal photocatalyst (40-FBI) can cause deep cracks in the polyethylene terephthalate (PET) within 10 h under the irradiation of full-spectrum light. Meanwhile, FT-IR characterization revealed that the absorption peak intensities of the C-O group, CO group, -CH stretching vibration, and -OH group on the MPs surface gradually increased with degradation time. A series of experiments and theory calculations revealed that the introduction of Fe creates impurity levels, accelerating the separation of photo-generated carriers and reducing the work function of BiO2-x, thereby enhancing the transport of photo-generated carriers between Z-scheme heterojunctions. This study offers a valuable idea for designing an efficient photocatalyst by simultaneously introducing ion doping and constructing heterojunctions for enhancing MPs degradation.
RESUMEN
In this study, heterostructures based on Bismuth molybdite/iron oxide (Bi2MoO6/Fe2O3) thin films were fabricated by a dip-coating technique using precursor solutions. The heterostructures were deposited on fluorine-doped tin oxide glass substrates. From a detailed characterization using X-ray diffraction and X-ray photoelectron spectroscopy, the formation of the orthorhombic phase for Bi2MoO6 and the co-existence of hematite and maghemite in Fe2O3 was demonstrated. Meanwhile, the field emission scanning electron microscopy cross-section images confirm the formation of well-defined Bi2MoO6 film under the Fe2O3 deposition. The optical band gap energies for the heterostructure obtained were estimated from the diffuse reflectance spectra and ranged from 2.3 to 3.5 eV. Photoluminescence analysis revealed an improved separation and faster transfer of photogenerated electrons and holes for the Bi2MoO6/Fe2O3 (Het) film. The best oxytetracycline (OTC) removal percentage through photoelectrocatalytic treatment was 96.85% using the Het. Besides, were carried out the variation of parameters which affect the OTC photoelectrocatalytic degradation as pH, potential applied, and scavenger assay. The 1O2 was the oxidant predominate, which attack the OTC ring to initiate and accelerate the degradation process. Based on the analysis of degradation intermediates and characteristics of Bi2MoO6/Fe2O3, possible degradation pathways and mechanisms of OTC were displayed. An enhancement of oxytetracycline degradation efficiency of Het fabricated compared to pristine oxides was achieved mainly due to avoid the charge recombination of photogenerated electron-hole pairs provided by Direct Z-scheme heterostructure. Finally, the Het fabricated represents a promising material for efficient and sustainable pharmaceutical removal applications.
Asunto(s)
Bismuto , Compuestos Férricos , Molibdeno , Oxitetraciclina , Bismuto/química , Compuestos Férricos/química , Molibdeno/química , Oxitetraciclina/química , Catálisis , Técnicas Electroquímicas , Contaminantes Químicos del Agua/química , Difracción de Rayos X , Procesos FotoquímicosRESUMEN
Organic photoelectrochemical transistor (OPECT) is an emerging technology studying photo-electric-biological recognition events. Here, this work reports the three-dimensional (3D) Z-scheme poly (1,4-diethynylbenzene) (pDEB)@Cu2O heterojunction as a high-efficacy photogating module and its application for OPECT bioassay. Specifically, 3D Z-scheme pDEB@Cu2O heterojunction enabled fast charge transport and ion diffusion in the system, achieving remarkable amplification capability with a current gain as high as ca. 9.6 × 103. By linking with GOx-labeled sandwich immunorecognition, the impact of GOx-generated H2O2 on the OPECT made possible the sensitive bioassay. Exemplified by carcinoembryonic antigen (CEA) as the model target, the OPECT device achieved a linear detection range spanning from 100 fg/mL to 100 ng/mL and coupled with a detection limit as low as 72 fg/mL. This work provided a generic and extensible platform for the designation of novel bioassay systems.
RESUMEN
A novel and highly efficient photocatalyst of a AgBiO3/BiOCl heterojunction has been developed via a facile water bath and in situ precipitation method. The photocatalytic activities of the catalysts were investigated by the degradation of ciprofloxacin (CIP) under visible-light irradiation (>420 nm). The experiment results revealed that the photocatalytic performance of the optimized AgBiO3/BiOCl heterojunction was much higher than pure AgBiO3 and BiOCl. The degradation efficiency of the as-prepared AgBiO3/BiOCl heterojunction (ABC-30) for CIP could reach 88% within 160 min, with 2.89 and 3.76 times higher activity than pure AgBiO3 and BiOCl, respectively. The improved photocatalytic performance of AgBiO3/BiOCl was attributed to the synergistic effect of the enhanced light absorption range and effective separation and transfer of the photo-induced charge carrier. The optimized heterojunction showed broad-spectrum catalytic activities towards various organic contaminants. The degradation efficiencies varied with the nature of the pollutant and decreased in the following order: Lanasol Red 5B (100%) > methyl orange (99%) > methylene blue (98%) > tetracycline (92%) > ciprofloxacin (88%) > ofloxacin (85%) > norfloxacin (78%) > rhodamine B (59%) > metronidazole (43%) > phenol (40%) > carbamazepine (20%). Furthermore, the trapping experiments and ESR indicated that superoxide radicals and holes were the main reactive species.
RESUMEN
It is, in fact, inevitable for steel to be covered with a layer of iron oxides and/or peroxides on its surface. However, knowledge of its existence and functionality for tribological behaviors is usually ignored. Herein, covalent-organic framework nanomaterials (CONs) composed of three well-screened acceptors and a donor through the imide linkage were fabricated to explore their lubrication performances. The results indicate that the energy-level matching between CONs and iron oxides or peroxides leads to the formation of a Z-scheme heterojunction structure at the rubbing interface. Also, the friction produces an internal electric field in the heterojunction, which drives the negative atomic/ionic species from the sliding interface to immigrate into the pore of CONs and resettle inside to engender the pinning effects, producing a fixed lubrication layer. Synchronously, it also attracts the free CONs in the base oil to form an easy-shear lubrication layer assembling onto the fixed one, producing a lubrication film with two layered configurations. Finally, the unique lubrication film, despite its thickness of a dozen nanometers, still exhibits impressive friction reduction and antiwear. This finding will inspire the technology to utilize the intrinsic surface nature of steel materials to exploit lubricant additives or modulate tribological behaviors.
RESUMEN
Improving the charge separation, charge transfer, and effective utilization is crucial in a photocatalysis system. Herein, we prepared a novel direct Z-scheme NH2-MIL-125(Ti)@FeOCl (Ti-MOF@FeOCl) composite photocatalyst through a simple method. The prepared composite catalyst was utilized in the photo-Fenton degradation of Rhodamine B (RhB) and ciprofloxacin (CIP). The Ti-MOF@FeOCl (10FeTi-MOF) catalyst exhibited the highest catalytic performance and degraded 99.1 and 66% of RhB and CIP, respectively. However, the pure NH2-MIL-125(Ti) (Ti-MOF) and FeOCl catalysts achieved only 50 and 92% of RhB and 50 and 37% of CIP, respectively. The higher catalytic activities of the Ti-MOF@FeOCl composite catalyst could be due to the electronic structure improvements, photoinduced charge separations, and charge transfer abilities in the catalyst system. The composite catalysts have also enhanced adsorption and visible light-responsive properties, allowing for efficient degradation. Furthermore, the electron paramagnetic resonance (EPR) signals, the reactive species trapping experiments, and Mott-Schottky (M - S) measurements revealed that the photogenerated superoxide radical (â¢O2-), hydroxyl radical (â¢OH), and holes (h+) played a vital role in the degradation process. The results also demonstrated that the Ti-MOF@FeOCl heterojunction composite catalysts could be a promising photo-Fenton catalyst system for the environmental remediation. Environmental implications The discharging of toxic contaminants such as organic dyes, antibiotics, and other emerging pollutants to the environment deteriorates the ecosystem. Specifically, the residues of organic pollutants recognized as a threat to ecosystem and a cause for carcinogenic effects. Among them, ciprofloxacin is one of antibiotics which has biological resistance, and metabolize partially in the human or animal bodies. It is also difficult to degrade ciprofloxacin completely with traditional treatment methods. Similarly, organic dyes are also toxic and a cause for carcinogenic effects. Therefore, effective degradation of organic pollutants such as RhB and ciprofloxacin with appropriate method is crucial.
Asunto(s)
Luz , Rodaminas , Catálisis , Rodaminas/química , Ciprofloxacina/química , Titanio/química , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Fotólisis , Hierro/química , Peróxido de Hidrógeno/química , Adsorción , Procesos FotoquímicosRESUMEN
In this study, we have designed a novel 1D-0D lead-free Z-scheme heterostructure of BiFeO3-ZnS (BFO/ZnS) using an isoelectric point-assistant annealing method for piezocatalytic reactions. The open circuit voltage measurements exhibited a greater internal electric field for BFO/ZnS (90/10) than for individual components, causing its excellent piezocatalytic performance for MTZ antibiotics, organic dyes oxidation, and Cr(VI) reduction. BFO/ZnS (90/10) was treated by corona poling to boost its polarization, resulting in the highest remanent polarization and dielectric constant. Piezocatalytic experiments demonstrated that BFO/ZnS (90/10; poled) can degrade 99% of RhB by 9 min ultrasonic vibration with kapp = 0.44 min-1, which is 2.5, 5.5, and 16.3 times greater than those of BFO/ZnS (90/10), BFO, and ZnS, respectively. Also, the efficiency of piezodegradation for MTZ, Cr(VI), MO, and MB over BFO/ZnS (90/10; poled) was found to be 74.5% (90 min), 84.6% (60 min), 95.3% (40 min), and 97.2% (30 min), respectively. This outstanding piezocatalytic performance of BFO/ZnS (90/10; poled) is ascribed to the enhanced built-in polarization field due to the Z-scheme heterostructure and corona poling treatment. As supported by PL and EIS analysis, the stronger built-in electric field can effectively separate and transmit the charge carriers, causing excellent piezocatalytic activity.
Asunto(s)
Sulfuros , Purificación del Agua , Compuestos de Zinc , Compuestos de Zinc/química , Sulfuros/química , Purificación del Agua/métodos , Catálisis , Contaminantes Químicos del Agua/química , Bismuto/química , Compuestos Férricos/química , Oxidación-ReducciónRESUMEN
In the present study, we introduce a covalent organic triazine framework polymer (COTF-P) using 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with triazine-based amine. The resulting dark red COTF-P illustrated potential behavior as a photocatalyst under visible light. Due to the inadequate solar energy capture and ultrafast charge recombination of the resulting COTF-P, the prepared COTF-P has been decorated with CQDs (N-CQD and N-S-CQD) to build a Z-scheme CQDs/COTF-P heterojunction photocatalyst and utilizes as photocatalyst for the breakdown of phenanthrene (PHE) exposed to visible light. The prepared COTF-P and CQDs/COTF-P were fully characterized, analyzing the textural (N2 isotherms), structural (XRD and FTIR), chemical (EDX and XPS), morphological (FESEM and TEM), optical (DRS-UV-Vis and photoluminescence), and electrochemical properties (EIS impedance, transient photocurrent, and flat band potential). The prepared N-S-CQD/COTF-P heterojunction displayed optimum activity for the photocatalytic oxidation of PHE from water, owing to an enhanced separation of the photogenerated charges and lower bandgap value, 2.1 vs. 1.9 eV. The N-S-CQD/COTF-P heterojunction showed acceptable stability in terms of activity and structural properties after 5 cycles of reuse. The mechanism of activation highlights the importance played by superoxide radicals and hydroxyl radicals. This project sheds light on the potential use of CQDs for the decoration of polymers, extending the absorbance in the visible region and boosting the migration of charge, which boosts the activity of the resulting material.