Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Pharm Des ; 30(26): 2059-2074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867532

RESUMEN

BACKGROUND: Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism. OBJECTIVE: This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH. METHODS: We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments. RESULTS: Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 targets for HPH, 311 drug-disease co-targets, and 17 core-targets. GO functional annotation analysis revealed that the core targets primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue. CONCLUSION: In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.


Asunto(s)
Medicamentos Herbarios Chinos , Hipertensión Pulmonar , Hipoxia , Farmacología en Red , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Animales , Ratas , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Medicina Tradicional China
2.
Phytomedicine ; 129: 155678, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754214

RESUMEN

BACKGROUND: How to screen and identify the effective components in the complex substance system is one of the core issues in achieving the modernization of traditional Chinese medicine (TCM) formulas. However, it is still challenging to systematically screen out the effective components from the hundreds or thousands of components in a TCM formula. PURPOSE: An innovative five-layer-funnel filtering mode stepwise integrating chemical profile, quantitative analysis, xenobiotic profile, network pharmacology and bioactivity evaluation was successfully presented to discover the effective components and implemented on a case study of Zhishi-Xiebai-Guizhi decoction (ZXG), a well-known TCM formula for coronary heart disease (CHD). METHODS: Initially, the chemical profile of ZXG was systemically characterized. Subsequently, the representative constituents were quantitatively analyzed. In the third step, the multi-component xenobiotics profile of ZXG was systemically delineated, and the prototypes absorbed into the blood were identified and designated as the primary bioavailable components. Next, an integrated network of "bioavailable components-CHD targets-pathways-therapeutic effects" was constructed, and the crucial bioavailable components of ZXG against CHD were screened out. Lastly, the bioactivities of crucial bioavailable components were further evaluated to pinpoint effective components. RESULTS: First of all, the chemical profile of ZXG was systemically characterized with the detection of 201 components. Secondly, 37 representative components were quantified to comprehensively describe its content distribution characteristics. Thirdly, among the quantified components, 24 bioavailable components of ZXG were identified based on the multi-component xenobiotic profile. Fourthly, an integrated network led to the identification of 11 crucial bioavailable components against CHD. Ultimately, 9 components (honokiol, magnolol, naringenin, magnoflorine, hesperidin, hesperetin, naringin, neohesperidin and narirutin) exhibiting myocardial protection in vitro were identified as effective components of ZXG for the first time. CONCLUSION: Overall, this innovative strategy successfully identified the effective components of ZXG for the first time. It could not only significantly contribute to elucidating the therapeutic mechanism of ZXG in the treatment of CHD, but also serve as a helpful reference for the systematic discovery of effective components as well as ideal quality markers in the quality assessment of TCM formulas.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicina Tradicional China/métodos , Enfermedad Coronaria/tratamiento farmacológico , Animales , Farmacología en Red , Masculino , Xenobióticos , Humanos
3.
Artículo en Inglés | MEDLINE | ID: mdl-36652817

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening syndrome with high morbidity and mortality. Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD) is a classic traditional Chinese medicine formula, used to treat cardiovascular diseases for centuries. However, its underlying medicinal mechanism has not been clearly elucidated, which hinders its widespread application. Here, the curative effects and therapeutic mechanism of ZSXBGZD against MI/R were addressed based on an integration of pharmaceutical evaluation and cellular metabolomics. First, a hypoxia/reoxygenation (H/R) model in H9c2 cells was employed to resemble MI/R and multiple pharmacological indicators were performed to assess the efficacy of ZSXBGZD. The results showed that ZSXBGZD possessed exceptional ability in attenuating cardiomyocyte injury, concerning oxidative stress, mitochondrial dysfunction, energy acquisition and cell apoptosis. Furthermore, a cell metabolomics approach based on HILIC and UPLC-Q-TOF-MS coupled with multivariate analysis was conducted to explore the metabolic regulation of ZSXBGZD. 38 differential polar metabolites related to H/R were uncovered, and 34 of them were reversed to normal state after the treatment of ZSXBGZD, revealing the perturbations of energy metabolism and amino acid metabolism. Moreover, formula decomposition justified the combination of single herbs to form ZSXBZGD and confirmed the pivotal status of Allii Macrostemonis Bulbus and Trichosanthis Fructus.


Asunto(s)
Hipoxia , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Estrés Oxidativo , Apoptosis
4.
J Pharm Biomed Anal ; 194: 113771, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33280997

RESUMEN

Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD), a traditional Chinese medicine (TCM) formula, has been used for treatment of coronary heart disease and myocardial infarction for nearly two thousand years. However, the chemical composition of ZSXBGZD is still unclear. In order to obtain the chemical profile of ZSXBGZD, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was utilized for the identification of its multi-constituents. As a result, a total of 148 compounds were identified based on their retention times, accurate masses and MS/MS data. In addition, an optimized UPLC fingerprint analysis, combined with chemometrics such as similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was developed for quality assessment of ZSXBGZD. Multivariate data analysis revealed that samples could be classified correctly according to their geographic origins, and four compounds neohesperidin, naringin, guanosine and adenosine contributed the most to classification. The established UPLC method with multi-wavelength detection was further validated and implemented for simultaneous quantification of 12 representative ingredients in the prescription, including guanosine, adenosine, 2'-deoxyadenoside, syringin, magnoloside A, forsythoside A, naringin, hesperidin, cinnamaldehyde, neohesperidin, honokiol and magnolol. This is the first report on the comprehensive profiling of major chemical components in ZSXBGZD. The results of the study could help to uncover the chemical basis of ZSXBGZD and possess potential value for quality evaluation purpose.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida
5.
Acta Pharmacol Sin ; 41(6): 735-744, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32051552

RESUMEN

Traditional Chinese medicine (TCM) has evolved over several thousands of years, which has been shown to be efficacious in the treatment of ischemic heart disease. Three classical TCM prescriptions, namely Xuefu Zhuyu Decoction, Zhishi Xiebai Guizhi Decoction, and Gualou Xiebai Banxia Decoction, have been extensively used in the treatment of coronary heart disease (CHD). Based on molecular network modeling, we performed a comparative pharmacogenomic analysis to systematically determine the drug-targeting spectrum of the three prescriptions at molecular level. Wide-area target molecules of CHD were covered, which was a common feature of the three decoctions, demonstrating their therapeutic functions. Meanwhile, collective signaling involved metabolic/pro-metabolic pathways, driving and transferring pathways, neuropsychiatric pathways, and exocrine or endocrine pathways. These organized pharmacological disturbance was mainly focused on almost all stages of CHD intervention, such as anti-atherosclerosis, lipid metabolism, inflammation, vascular wall function, foam cells formation, platelets aggregation, thrombosis, arrhythmia, and ischemia-reperfusion injury. In addition, heterogeneity analysis of the global pharmacological molecular spectrum revealed that signaling crosstalk, cascade convergence, and key targets were tendentious among the three decoctions. After all, it is unadvisable to rank the findings on targeting advantages of the three decoctions. Comparative pharmacological evidence may provide an appropriate decoction scheme for individualized intervention of CHD.


Asunto(s)
Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/genética , Medicamentos Herbarios Chinos/uso terapéutico , Pruebas de Farmacogenómica , Humanos , Medicina Tradicional China , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA