Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; : e202400761, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219146

RESUMEN

The quantification of Lewis acidity is of fundamental and applied importance in chemistry. While the computed fluoride ion affinity (FIA) is the most widely accepted thermodynamic metric, only sparse experimental values exist. Accordingly, a benchmark of methods for computing Lewis pair formation enthalpies, also with a broader set of Lewis bases against experimental data, is missing. Herein, we evaluate different density functionals against a set of 112 experimentally determined Lewis acid/base binding enthalpies and gauge influences such as solvation correction in structure optimization. From that, we can recommend r2SCAN-3c for robust quantification of this omnipresent interaction.

2.
Talanta ; 281: 126804, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243443

RESUMEN

Triacylglycerols (TAGs), a major lipid class in foods and the human body, consist of three fatty acids esterified to a glycerol backbone. They can occur in various isomeric forms, including sn-positional, cis/trans configurational, acyl chain length, double bond positional, and mixed type isomers. Separating isomeric mixtures is of great interest as different isomers can have distinct influence on mechanisms, such as digestibility, oxidative stability, or lipid metabolism. However, TAG isomer separation remains challenging with established analytical methodologies such as liquid-chromatography coupled to mass spectrometry (LC-MS). In this study, we developed a method with cyclic ion mobility mass spectrometry (cIMS-MS) for the separation and identification of all types of TAG isomers. First, the influence of different adducts (Li+, NH4+, Na+, and K+) on the separation was studied. Overall, it was concluded that the sodium adduct is the best choice to efficiently separate all types of TAG isomers. In addition, trends were found in the influence of specific structural features on the drift time order. An order of relative influence (from high to low) was established; (1) degree of unsaturation of the fatty acid(s) on an exterior position (if the total degree of unsaturation(s) is equal in both TAGs), (2) acyl chain length on the exterior positions, (3) cis/trans configuration, and (4) double bond (DB)-position. Finally, various cIMS-MS strategies were developed for the separation of mixtures containing four, five, and six isomers. To conclude, the developed methods can be used for separation of complex mixtures of TAG isomers and have great potential to be expanded to isomers of similar types of lipids such as di- and monoacylglycerols. This study also shows the potential of cIMS-MS to be used for the application on real TAG samples.

3.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273150

RESUMEN

A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad range of thioesters and sulfenyl-substituted aldehydes in yields above 86%, in mild and metal-free conditions. In this study, thirty-six sulfur-based derivatives were obtained and characterized by spectroscopic methods.


Asunto(s)
Aldehídos , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Aldehídos/química , Catálisis , Metano/química , Metano/análogos & derivados , Tecnología Química Verde/métodos
4.
Gastro Hep Adv ; 3(6): 809-820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280920

RESUMEN

Background and Aims: Blood-based biomarkers for hepatocellular carcinoma (HCC) and its recurrence are lacking. We previously showed that hepatic γ-hydroxy-1,N 2 -propano-2'-deoxyguanosine (γ-OHPdG), an endogenous DNA adduct derived from acrolein by lipid peroxidation, increased during hepatocarcinogenesis. Additionally, higher hepatic γ-OHPdG from HCC patients after surgery were strongly associated with poor survival (P < .0001) and recurrence-free survival (P = .007) (Fu et al, Hepatology, 2018). These findings suggest that γ-OHPdG is a potential prognostic biomarker for HCC and its recurrence. To attain the goal of using γ-OHPdG as a biomarker in future preventive and therapeutic trials, we developed a blood-based method to detect γ-OHPdG in circulating liver tumor cells from HCC patient blood. Methods: We first established the specificity of anti-γ-OHPdG antibody by determining its dose-response in HepG2 cells treated with acrolein. Then, HepG2 cells in spiked blood of healthy volunteers and circulating tumor cells (CTCs) from 32 HCC patients were isolated using a RosetteSep CD45 Depletion Cocktail and Ficoll Paque. The HCC CTCs identified with anti-asialoglycoprotein receptor 1, a surface protein expressed solely in hepatocytes, were stained with an anti-γ-OHPdG antibody. The number of total HCC CTCs and γ-OHPdG-positive CTCs, as well as the staining intensity, were quantified using MetaMorph software. As an initial effort toward its clinical application, we also evaluated γ-OHPdG in CTCs from these patients along with certain clinical features. Results: The γ-OHPdG antibody specificity was demonstrated by an acrolein concentration-dependent increase of γ-OHPdG-positive HepG2 cells and the intensity of γ-OHPdG staining. The recovery of HepG2 cells from spiked blood was ∼50-60%, and the positivity rate of CTCs in blood from 32 patients with advanced HCC was 97%. The MetaMorph analysis showed a wide variation among patients in total number of CTCs, γ-OHPdG positivity, and staining intensity. Statistical analysis revealed that γ-OHPdG in CTCs of these patients appears to be associated with multifocality and poor differentiation. Conclusion: A blood-based method was developed and applied to HCC patients to evaluate the potential of γ-OHPdG in CTCs as a prognostic biomarker.

5.
Food Chem ; 463(Pt 2): 141287, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39298850

RESUMEN

Non-traditional seafood, such as spoon worms (Urechis unicinctus) and peanut worms (Sipunculus nudus), serves as both delicacies and potential solutions to the global food insecurity crisis. Despite being consumed primarily in parts of China, Korea, and Japan, the nutritional values especially the complex fatty acid compositions of these marine worms are difficult to characterize. To overcome this obstacle, we employed covalent adduct chemical ionization (CACI) tandem mass spectrometry for the de novo identification of their unusual polyunsaturated fatty acids (PUFA). Through this method, we identified several PUFA with polymethylene-interrupted (PMI) double bond configurations, including 22:3(7Z,13Z,16Z), a novel PUFA derived from sciadonic acid. U. unicinctus exhibits an exceptionally low n-6/n-3 PUFA ratio of 0.15, making it a potential functional food to counterbalance the n-6/n-3 imbalance in modern diets. S. nudus boasts notably high concentrations (∼3 %, wt/wt) of branched chain fatty acids (BCFA), exceeding typical levels found in dairy products.

6.
Anal Bioanal Chem ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215775

RESUMEN

The highly blistering sulfur mustard analogue agent T (bis(2-chloroethylthioethyl) ether), also known as O-mustard or oxy-mustard, is a common impurity in military grade sulfur mustard (SM) and a component of mixtures such as "HT" that are still found in old munitions. Together with sesquimustard (Q), it is the most important SM analogue and tightly regulated as a Schedule 1 chemical under the Chemical Weapons Convention. We report the adducts of T with nucleophilic Cys34 and other residues in human serum albumin (HSA) formed in vitro. A micro liquid chromatography electrospray ionization high-resolution tandem-mass spectrometry method (µLC-ESI MS/HR MS) was developed for the detection and identification of biomarker peptides alkylated by a T-derived hydroxyethylthioethyloxyethylthioethyl (HETEOETE)-moiety (as indicated by an asterisk below). Following proteolysis of T-exposed human plasma with pronase, the dipeptide Cys34*Pro and the single amino acid residue His* were produced. The use of proteinase K yielded Cys34*ProPhe and the use of pepsin generated ValThrGlu48*Phe, AlaGlu230*ValSerLysLeu, and LeuGlyMet329*Phe. Corresponding peptide-adducts of SM and Q were detected in a common workflow that in principle allowed the estimation of the mustard or mustard composition encountered during exposure. Novel adducts of Q at the Glu230 and Met239 residues were detected and are reported accordingly. Based on molecular dynamics simulations, we identified regular interactions of the Cys34(-HETEOETE)-moiety with several glutamic acid residues in HSA including Glu86, which is not an obvious interaction partner by visual inspection of the HSA crystal structure. The existence of this and other intramolecular cross-links was experimentally proven for the first time.

7.
Environ Int ; 190: 108922, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39128373

RESUMEN

BACKGROUND: Benzo(a)pyrene (B[a]P) is the most widely concerned polycyclic aromatic hydrocarbons (PAHs), which metabolizes benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) in vivo to produce carcinogenic effect on the body. Currently, there is limited research on the role of the variation of metabolic enzymes in this process. METHODS: We carried out a study including 752 participants, measured the concentrations of 16 kinds PAHs in both particle and gaseous phases, urinary PAHs metabolites, leukocyte BPDE-DNA adduct and serum BPDE- Albumin (BPDE-Alb) adduct, and calculated daily intake dose (DID) to assess the cumulative exposure of PAHs. We conducted single nucleotide polymorphism sites (SNPs) of metabolic enzymes, explored the exposure-response relationship between the levels of exposure and BPDE adducts using multiple linear regression models. RESULT: Our results indicated that an interquartile range (IQR) increase in B[a]P, PAHs, BaPeq, 1-hydroxypyrene (1-OHP), 1-hydroxynaphthalene (1-OHNap) and 2-hydroxynaphthalene (2-OHNap) were associated with 26.53 %, 24.24 %, 28.15 %, 39.15 %, 12.85 % and 14.09 % increase in leukocyte BPDE-DNA adduct (all P < 0.05). However, there was no significant correlation between exposure with serum BPDE-Alb adduct (P > 0.05). Besides, we also found the polymorphism of CYP1A1(Gly45Asp), CYP2C9 (Ile359Leu), and UGT1A1(downstream) may affect BPDE adducts level. CONCLUSION: Our results indicated that leukocyte BPDE-DNA adduct could better reflect the exposure to PAHs. Furthermore, the polymorphism of CYP1A1, CYP2C9 and UGT1A1affected the content of BPDE adducts.


Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Aductos de ADN , Interacción Gen-Ambiente , Hidrocarburos Policíclicos Aromáticos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , China , Citocromo P-450 CYP1A1/genética , Aductos de ADN/sangre , Pueblos del Este de Asia/genética , Exposición a Riesgos Ambientales , Glucuronosiltransferasa/genética , Leucocitos/metabolismo , Hidrocarburos Policíclicos Aromáticos/sangre , Polimorfismo de Nucleótido Simple , Citocromo P-450 CYP2C9/genética
8.
J Mass Spectrom ; 59(9): e5079, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39132903

RESUMEN

Triphenylamine (TPA) and N-heterotriangulene (N-HTA) scaffolds with up to three oligophenyl extensions are investigated by electrospray ionization (tandem) mass spectrometry (ESI-[MS/]MS). Due to their low oxidation potentials, all molecules readily form radical cations in the electrospray process. The energy-resolved collision-induced dissociation behaviour of the molecular ions is contrasted to that of the silver(I) adducts. Complexation with Ag(I) leads to the expected [1:1] and [2:1] complexes (MAg+ and M2Ag+); however, even [1:2] complexes (MAg2 2+) can be detected for molecules with two and three large π-expansions to allow stabilization of two charges. The TPA scaffolds decompose only at high collision energies through the loss of peripheral tert-butyl groups. A general mechanism for this is proposed commencing with a methyl loss and followed by the release of isobutene and butyl radical moieties. The N-HTA-based scaffolds are considerably less stable and molecular ions fragment at low collision energies. This is caused by the facile loss of methyl radicals from the dimethylmethylene-bridged triangulene core. In contrast, complexation with Ag+ leads to a dramatic stabilization. Most interestingly, dissociation eventually proceeds via the loss of neutral AgCH3, which is indicative of strong bidentate, tweezer-like bonding of Ag+ to the molecules.

9.
J Agric Food Chem ; 72(32): 18155-18161, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088813

RESUMEN

Balkan endemic nephropathy (BEN) is a chronic kidney disease that predominantly affects inhabitants of rural farming communities along the Danube River tributaries in the Balkans. Long-standing research has identified dietary exposure to aristolochic acids (AAs) as the principal toxicological cause. This study investigates the pathophysiological role of anemia in BEN, noting its earlier and more severe manifestation in BEN patients compared to those with other chronic kidney diseases. Utilizing a mouse model, our research demonstrates that prolonged exposure to aristolochic acid I (AA-I) (the most prevalent AA variant) leads to significant red blood cell depletion through DNA damage, such as DNA adduct formation in bone marrow, prior to observable kidney function decline. Furthermore, in vitro experiments with kidney cells exposed to lowered oxygen and pH conditions mimicking an anemia environment show enhanced DNA adduct formation, suggesting increased AA-I mutagenicity and carcinogenicity. These findings indicate for the first time a positive feedback mechanism of AA-induced anemia, DNA damage, and kidney impairment in BEN progression. These results not only advance our understanding of the underlying mechanisms of BEN but also highlight anemia as a potential target for early BEN diagnosis and therapy.


Asunto(s)
Anemia , Ácidos Aristolóquicos , Nefropatía de los Balcanes , Aductos de ADN , Ácidos Aristolóquicos/toxicidad , Ácidos Aristolóquicos/efectos adversos , Nefropatía de los Balcanes/inducido químicamente , Nefropatía de los Balcanes/metabolismo , Nefropatía de los Balcanes/genética , Aductos de ADN/metabolismo , Animales , Ratones , Humanos , Anemia/inducido químicamente , Anemia/metabolismo , Anemia/genética , Masculino , Daño del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Riñón/efectos de los fármacos , Riñón/metabolismo , Femenino
10.
Angew Chem Int Ed Engl ; : e202412307, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183710

RESUMEN

While azides do not react with simple alkenes except under harsh conditions, a diboron alkene analogue, the doubly cyclic alkyl(amino)carbene (CAAC)-stabilized dicyanodiborene 1, reacts spontaneously with organic azides (7-10 equiv.) at room temperature to yield two equivalents of stable CAAC-stabilized imino(cyano)boranes (2-R). NMR-spectroscopic monitoring of the reaction mixtures shows the initial formation of a 1:1 mixture of 2-R and a relatively long-lived intermediate (Int), which in the presence of excess azide is converted into a second equivalent of 2-R. In the absence of excess azide, however, Int decomposes to 3, the product of an intramolecular C‒H activation by a putative dicoordinate borylene intermediate "(CAAC)B(CN)". Mechanistic insights from trapping experiments, NMR-spectroscopic and high-resolution mass spectrometry data, as well as DFT computations reveal that Int is the terminal borylene end-on-dinitrogen adduct [(CAAC)B(CN)(η1-N2)]. The formation of the iminoboranes 2-R from diborene 1 and RN3 proceeds via an azide-diborene Huisgen-type [3+2] cycloaddition reaction, followed by a retro-[3+2] cycloaddition, yielding 2-R and [(CAAC)B(CN)(η1-N2)]. The latter then undergoes either N2 extrusion and intramolecular C‒H activationto generate 3, or a Staudinger-type reaction with a second equivalent of azide to generate a second equivalent of the iminoborane 2-R.

11.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000135

RESUMEN

DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.


Asunto(s)
Encéfalo , Daño del ADN , Reparación del ADN , Humanos , Encéfalo/metabolismo , Animales
12.
Arch Pharm (Weinheim) ; : e2400372, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963326

RESUMEN

The Morita-Baylis-Hillman (MBH) reaction is a unique C-C bond-forming technique for the generation of multifunctional allylic alcohols (MBH adducts) in a single operation. In recent years, these MBH adducts have emerged as a novel class of compounds with significant biological potential, including anticancer, anti-leishmanial, antibacterial, antifungal, anti-herbicidal effects and activity against Chagas disease, and so on. The aim of this review is to assimilate the literature findings from 2011 onwards related to the synthesis and biological potential of MBH adducts, with an emphasis on their structure-activity relationships (SAR). Although insight into the biological mechanisms of action for this recently identified pharmacophore is currently in its nascent stages, the mechanisms described so far are reviewed herein.

13.
J Inorg Biochem ; 259: 112654, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38959524

RESUMEN

In our continued investigations of microbial globins, we solved the structure of a truncated hemoglobin from Shewanella benthica, an obligate psychropiezophilic bacterium. The distal side of the heme active site is lined mostly with hydrophobic residues, with the exception of a tyrosine, Tyr34 (CD1) and a histidine, His24 (B13). We found that purified SbHbN, when crystallized in the ferric form with polyethylene glycol as precipitant, turned into a green color over weeks. The electron density obtained from the green crystals accommodated a trans heme d, a chlorin-type derivative featuring a γ-spirolactone and a vicinal hydroxyl group on a pyrroline ring. In solution, exposure of the protein to one equivalent of hydrogen peroxide resulted in a similar green color change, but caused by the formation of multiple products. These were oxidation species released on protein denaturation, likely including heme d, and a species with heme covalently attached to the polypeptide. The Tyr34Phe replacement prevented the formation of both heme d and the covalent linkage. The ready modification of heme b by SbHbN expands the range of chemistries supported by the globin fold and offers a route to a novel heme cofactor.


Asunto(s)
Hemo , Shewanella , Shewanella/metabolismo , Shewanella/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Cristalografía por Rayos X , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo
14.
Chem Asian J ; : e202400617, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041884

RESUMEN

The reactivity of Morita-Baylis-Hillman Adduct (MBHA) derivative 7 was studied with different primary amine derivatives such as n-butylamine, Na-acetyl-L-lysine methyl ester, and a poly-(L-lysine) derivative as lysine models to obtain information about the possible reactions in complex protein environments. MBHA derivative 7 reacted with n-butylamine or Na-acetyl-L-lysine methyl ester producing monoadducts 9a or 9c, which showed bright emission features in the green region at 526-535 nm with photoluminescence quantum yield values in solutions of 73% and 51%, respectively. Based on these results, MBHA derivative 7 can be considered an interesting new fluorogenic probe potentially useful in the labelling of basic amino acid residues. Furthermore, similar to other MBHA derivatives, compound 7 showed the tendency to produce diadducts especially in polar solvents system where specific interactions between the extended aromatic moieties may play a major role.

15.
Beilstein J Org Chem ; 20: 1590-1603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076292

RESUMEN

In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor-acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety. The excellent photoswitchability in organic medium and the photoresponsiveness in aqueous medium, driven by visible light, were investigated by UV-vis absorption spectroscopy. The assembled supramolecular nanostructures were confirmed by electron microscopy, while the supramolecular packing was revealed by X-ray diffraction analysis. Upon visible-light irradiation, significant transformations of the DA geometry enabled transformations of the supramolecular assemblies on a microscopic scale, subsequently disassembling macroscopic soft scaffolds of DAs. The current work shows promising use for the fabrication of visible-light-controlled macroscopic scaffolds, offering the next generation of biomedical materials with visible-light-controlled microenvironments and future soft-robotic systems.

16.
Angew Chem Int Ed Engl ; : e202411074, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078744

RESUMEN

Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63 V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3 V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; (DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.

17.
Talanta ; 278: 126541, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018760

RESUMEN

A polyethyleneimine capped silver nanoclusters (PEI-AgNCs) based turn-off-on fluorescence sensor has been developed to determine glutathione (GSH) effectively. The fluorescence intensity of silver nanoclusters (AgNCs) has been quenched by Cu(II) and recovered by adding GSH. The quenching of fluorescence intensity of PEI-AgNCs by Cu(II) and recovery of the emission intensity of PEI-AgNCs after the addition of GSH is supposed to be ground state adduct formation. Due to the greater affinity of Cu(II) towards GSH compared to that to PEI-AgNCs, the defragmentation of PEI-AgNCs-Cu(II) adduct occurs after the addition of GSH to the solution, resulting in the recovery of emission intensity of PEI-AgNCs. Characterisation studies of the probe have been done using FT-IR spectroscopy, XPS analysis, XRD analysis, UV-visible and Fluorescence spectrophotometry, EDX spectroscopy and TEM analysis. Different experimental parameters were optimised. Under optimised analytical conditions, the sensor showed a wide linear range for the quantification of GSH from 1.00 × 10-4 M to 3.00 × 10-6 M with a detection limit (LOD) of 8.00 × 10-7 M. Selectivity and interference studies were done in the presence of different structurally similar and coexisting species of GSH in blood. The practical utility of the proposed sensor has been validated in artificial blood serum.


Asunto(s)
Glutatión , Nanopartículas del Metal , Polietileneimina , Plata , Espectrometría de Fluorescencia , Polietileneimina/química , Glutatión/química , Glutatión/sangre , Glutatión/análisis , Plata/química , Nanopartículas del Metal/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Humanos , Cobre/química
18.
J Agric Food Chem ; 72(27): 15311-15320, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943596

RESUMEN

Omega-3 long-chain polyunsaturated fatty acids (LCPUFA) play critical roles in human development and health. Their intake is often effectively estimated solely based on seafood consumption, though the high intake of terrestrial animal-based foods with minor amounts of LCPUFA may be significant. Covalent adduct chemical ionization (CACI) tandem mass spectrometry is one approach for de novo structural and quantitative analysis of minor unsaturated fatty acids (FA), for which standards are unavailable. Here, CACI-MS and MS/MS are used to identify and quantify minor omega-3 LCPUFA of terrestrial animal foods based on the application of measured response factors (RFs) to various FA. American mean intakes of pork, beef, chicken, and eggs contribute 20, 27, 45, and 71 mg/day of docosahexaenoic acid (DHA), respectively. The estimated intake of omega-3 DHA, eicosapentaenoic acid, and docosapentaenoic acid from nonseafood sources is significant, at 164, 103, and 330 mg/day, greater than most existing estimates of omega-3 LCPUFA intake.


Asunto(s)
Pollos , Huevos , Ácidos Grasos Omega-3 , Animales , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/química , Huevos/análisis , Humanos , Estados Unidos , Bovinos , Porcinos , Carne/análisis , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos , Ácidos Docosahexaenoicos/análisis , Ácidos Docosahexaenoicos/química
19.
Bioorg Med Chem Lett ; 109: 129850, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879090

RESUMEN

For small-molecule drugs, lipidation via a cleavable linkage can extend half-life in circulation through interaction with albumin. Here we modified the cysteinylprolyl ester (CPE) system used in peptide thioester synthesis, which normally requires basic conditions, for use as an self-immolative linker and release device for a lipid-gemcitabine conjugate. To improve release under physiological conditions for medical application, a methyl group at the α-position of cysteine on the CPE unit was incorporated in anticipation of the Thorpe-Ingold effect. As a result, Ac-Gly-(α-Me)Cys(SH)-Pro-gemcitabine 11 drastically promoted the release of gemcitabine in comparison with Ac-Gly-Cys(SH)-Pro-gemcitabine 10. Furthermore, in the presence of bovine serum albumin and/or 2-mercaptoethanesulfonic acid, the gentle and continuous release of gemcitabine from the lipid-gemcitabine conjugate 16 was achieved. In addition to gemcitabine, this method could allow high clearance drugs, including nucleic acid and prostacyclin derivatives, to maintain their biological activity long enough to become effective.


Asunto(s)
Desoxicitidina , Ésteres , Gemcitabina , Lípidos , Desoxicitidina/química , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Lípidos/química , Ésteres/química , Ésteres/farmacología , Ésteres/síntesis química , Liberación de Fármacos , Cisteína/química , Humanos , Estructura Molecular , Albúmina Sérica Bovina/química , Animales
20.
Toxicol Mech Methods ; 34(8): 877-885, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38832450

RESUMEN

The fenugreek plant (Trigonella foenum-graecum) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the in vitro glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro® was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro® as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro®, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro® boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.


Fenfuro® is a novel patented formulation of Fenugreek seed extract with more than 45% furostanolic saponins and anti-diabetic property free from any side effect as established through clinical study.In the present study, the role of Fenfuro® in arresting in vitro AGE formation and glycation-induced amyloid formation has been demonstrated with the help of three amyloidogenic proteins, namely Human Lysozyme, Human alpha-synuclein and Bovine Serum Albumin using Methyl Glyoxal as the glycating agent.A 0.25% (w/v) ethanolic solution of Fenfuro® resulted in more than 50% arrest in glycation with simultaneous prevention of aggregation as demonstrated by native PAGE, DLS and inhibition of development of Thio-T positive amyloid like entities.The studies collectively aim toward the development of a safe therapeutic method for arresting protein glycation through direct physical intervention.


Asunto(s)
Productos Finales de Glicación Avanzada , Hipoglucemiantes , Extractos Vegetales , Piruvaldehído , Trigonella , Trigonella/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Productos Finales de Glicación Avanzada/metabolismo , Piruvaldehído/química , Piruvaldehído/toxicidad , Piruvaldehído/metabolismo , Semillas/química , alfa-Sinucleína/metabolismo , Muramidasa/metabolismo , Muramidasa/química , Albúmina Sérica/metabolismo , Albúmina Sérica/química , Glicosilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA