Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.007
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2402854, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087384

RESUMEN

Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124922, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096671

RESUMEN

It has been well established that Hydrogen sulfide (H2S) is involved in various pathophysiological processes. Therefore, accurate monitoring H2S levels in vitro or vivo is of great significance in biological systems. Herein, we firstly developed a thiomaleimide-based compound MAL-1 bearing aggregation-induced emission characteristic for selective response toward H2S due to its nucleophilicity. The proposed sensor presented prominent sensitivity and selectivity with low detection limit of 75 nM and pseudo-first-order reaction rate constant of 9.65 × 10-2 s-1, as well as low cytotoxicity which works well in recognizing H2S in real samples and visualizing H2S in living cells. Thus, it could be concluded that the novel thiomaleimide-based probe would be a promising tool for assessing intracellular H2S levels.

3.
Luminescence ; 39(7): e4827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39048529

RESUMEN

Chemiluminescence resonance energy transfer (CRET) efficiency can be enhanced by confining CRET donors and acceptors within nanoscale spaces. However, this enhanced efficiency is often affected by uncertainties stemming from the random distribution of CRET donors and acceptors in such confined environments. In this study, a novel confined nanospace was created through the surfactant modification of carbon dots (CDs) exhibiting aggregation-induced emission (AIE) characteristics. Hydrophobic CRET donors could be effectively confined within this nanospace. The distance between the CRET donors and acceptors could be controlled by anchoring the AIE-CDs as the CRET acceptors, resulting in significantly improved CRET efficiency. Furthermore, this AIE-CDs-based CRET system was successfully applied to the detection of hydrogen peroxide (H2O2) in rainwater, showcasing its potential for practical applications.


Asunto(s)
Carbono , Peróxido de Hidrógeno , Luminiscencia , Puntos Cuánticos , Tensoactivos , Carbono/química , Tensoactivos/química , Puntos Cuánticos/química , Peróxido de Hidrógeno/química , Mediciones Luminiscentes , Transferencia Resonante de Energía de Fluorescencia , Transferencia de Energía
4.
ACS Nano ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058791

RESUMEN

Activity-based detection of γ-Glutamyltranspeptidase (GGT) using near-infrared (NIR) fluorescent probes is a promising strategy for early cancer diagnosis. Although NIR pyridinium probes show high performance in biochemical analysis, the aggregation of both the probes and parental fluorochromes in biological environments is prone to result in a low signal-to-noise ratio (SBR), thus affecting their clinical applications. Here, we develop a GGT-activatable aggregate probe called OTBP-G for two-photon fluorescence imaging in various biological environments under 1040 nm excitation. By rationally tunning the hydrophilicity and donor-acceptor strength, we enable a synergistic effect between twisted intramolecular charge transfer and intersystem crossing processes and realize a perfect dark state for OTBP-G before activation. After the enzymatic reaction, the parental fluorochrome exhibits bright aggregation-induced emission peaking at 670 nm. The fluorochrome-to-probe transformation can induce 1000-fold fluorescence ON/OFF ratio, realizing in vitro GGT detection with an SBR > 900. Activation of OTBP-G occurs within 1 min in vivo, showing an SBR > 400 in mouse ear blood vessels. OTBP-G can further enable the early detection of pulmonary metastasis in breast cancer by topically spraying, outperforming the clinical standard hematoxylin and eosin staining. We anticipate that the in-depth study of OTBP-G can prompt the development of early cancer diagnosis and tumor-related physiological research. Moreover, this work highlights the crucial role of hydrophilicity and donor-acceptor strength in maximizing the ON/OFF ratio of the TICT probes and showcases the potential of OTBP as a versatile platform for activity-based sensing.

5.
J Colloid Interface Sci ; 676: 774-782, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39059283

RESUMEN

Bacterial infections pose a substantial threat to human health, particularly with the emergence of antibiotic-resistant strains. Therefore, it is essential to develop novel approaches for the efficient treatment of bacterial diseases. This study presents a therapeutic approach involving BBR@MMT nanosheets (NSs), wherein montmorillonite (MMT) was loaded with berberine (BBR) through an ion intercalation reaction to sterilize and promote wound healing. BBR@MMT exhibits nano-enzymatic-like catalytic activity, is easy to synthesize, and requires low reaction conditions. This nanocomplex showed photodynamic properties and superoxide dismutase (SOD) activity. The in vitro experiments indicated that BBR@MMT was able to effectively inhibit the growth of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli) through the production of ROS when exposed to white light. Meanwhile, BBR@MMT inhibited the secretion of pro-inflammatory factors and scavenged free radicals via its SOD-like activity. In vivo results showed that BBR@MMT NSs were capable of effectively promoting the wound-healing process in infected mice under white light irradiation. Hence, it can be concluded that photodynamic therapy based on BBR@MMT NSs with nano-enzymatic activity has the potential to be used in treating infections and tissue repair associated with drug-resistant microorganisms.

6.
ACS Nano ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046933

RESUMEN

The self-renewal and differentiation properties of cancer stem cells (CSCs) result in chemoresistance in breast cancer. Even though numerous drugs have been developed to target CSCs, they have suffered from inefficient delivery and accumulation at the focal site. Here, a thermoresponsive hydrogel is developed by coencapsulating aggregation-induced emission (AIE)-active photothermal agent and thioridazine (THZ), demonstrating a controllable delivery system triggered by the AIE agent to augment THZ-mediated CSC ablation. Upon near-infrared laser stimuli, the photothermal effect from the AIE agent induces hydrogel deformation for burst drug release. The precise in situ tumor administration of the hydrogel accelerates drug diffusion and accumulation in deep breast cancer lesions. Thus, THZ can invade tumors and provoke massive CSC apoptosis via dopamine receptor blockage and oxidative stress induction. Consequently, effective CSC inhibition and significant suppression of tumor recurrence and metastasis are demonstrated in mice with breast cancer. We believe that this intelligent hydrogel-based delivery system represents a promising treatment strategy for metastatic breast cancer with clinical potential.

7.
Biosens Bioelectron ; 263: 116572, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39047649

RESUMEN

Fluorescence sensing of latent fingerprints (LFPs) has gained extensive attention due to its high sensitivity, non-destructive testing, low biotoxicity, ease of operation, and the potential for in situ visualization. However, the realization of in situ visualization of LFPs especially with green emission and rapid speed is still a challenge. Herein, we synthesized an amphibious green-emission AIE-gen TPE-NI-AOH (PLQY = 62%) for instant in situ LFP detecting, which integrates the excellent fluorescence properties of naphthalimide (NI) with a hydrophilic head and the AIE character as well as the donating property of tetraphenylethene (TPE). TPE-NI-AOH in ethanol/water binary solvent was used as an environmentally friendly LFP developer and achieved in situ green-fluorescence visualization of LFPs. The fluorescence signal achieves its 60% saturated intensity in 0.37 s and nearly 100% in 2.50 s, which is an instant process for the naked eye. Moreover, level 3 details and super-resolution images of LFPs could be observed clearly. Besides, the TPE-NI-AOH developer could be stored for at least 6 months, suitable for long-term storage. This instant in situ highlighting method does not require post-processing operations, providing a more convenient, rapid, and efficient detection method of LFPs. This work would inspire the further advancement of fluorescent sensors for fingerprint imaging.

8.
Chem Asian J ; : e202400741, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058306

RESUMEN

Achieving the concurrent manifestation of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) within a single molecular system is highly sought after for organic light-emitting diodes (OLEDs), yet remains rare. In this study, we present a novel TADF-AIE dye, named PQMO-PXZ, which has been designed, synthesized, and systematically characterized. Our comprehensive investigation, which includes structural analysis, theoretical calculations, and optical studies, evaluates the potential of PQMO-PXZ for integration into OLEDs. Unlike existing azaryl-ketone-based emitters, PQMO-PXZ exhibits red-shifted emission and enhanced luminescence efficiency, due to its rigid structure and strong intramolecular charge transfer characteristics. Significantly, PQMO-PXZ demonstrates pronounced AIE properties and TADF with a short delayed lifetime. When utilized as the emissive core, OLED devices based on PQMO-PXZ achieve a respectable external quantum efficiency of up to 11.8% with minimal efficiency roll-off, underscoring PQMO-PXZ's promise as a highly efficient candidate for OLED applications.

9.
Adv Mater ; : e2406474, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054931

RESUMEN

One-for-all phototheranostics based on a single molecule is recognized as a convenient approach for cancer treatment, whose efficacy relies on precise lesion localization through multimodal imaging, coupled with the efficient exertion of phototherapy. To unleash the full potential of phototheranostics, advancement in both phototheranostic agents and light delivery methods is essential. Herein, an integrated strategy combining a versatile molecule featuring aggregation-induced emission, namely tBuTTBD, with a modified optical fiber to realize comprehensive tumor diagnosis and "inside-out" irradiation in the orthotopic breast tumor, is proposed for the first time. Attributed to the intense donor-acceptor interaction, highly distorted conformation, abundant molecular rotors, and loose intermolecular packing upon aggregation, tBuTTBD can synchronously undergo second near-infrared (NIR-II) fluorescence emission, photothermal and photodynamic generation under laser irradiation, contributing to a trimodal NIR-II fluorescence-photoacoustic (PA)-photothermal imaging-guided phototherapy. The tumor treatment is further carried out following the insertion of a modified optical fiber, which is fabricated by splicing a flat-end fiber with an air-core fiber. This configuration aims to enable effective in situ phototherapy by maximizing energy utilization for therapeutic benefits. This work not only enriches the palette of NIR-II phototheranostic agents but also provides valuable insight for exploring an integrated phototheranostic protocol for practical cancer treatment.

10.
Mikrochim Acta ; 191(8): 461, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990273

RESUMEN

Three phenomena, namely coordination-induced emission (CIE), aggregation-induced emission (AIE), and inner filter effect (IFE), were incorporated into the design of a ratiometric and color tonality-based biosensor. Blue fluorescent Al-based metal-organic frameworks (FMIL-96) were prepared from non-emissive ligand and aluminum ions via CIE. Interestingly, the addition of tetracycline (TC) led to ratiometric detection and color tonality, as the blue emission at 380 nm was quenched (when excited at 350 nm) due to IFE, while the green-yellowish emission at 525 nm was enhanced due to AIE. Based on that, an ultra-sensitive visual-based color tonality mode with smartphone assistance was developed for detection of TC. The sensor exhibited a linear relationship within a broad range of 2.0 to 85.0 µM TC with a detection limit of 68.0 nM. TC in milk samples was quantified with high accuracy and precision. This integration of smartphone and visual fluorescence in solution is accurate, reliable, cost-effective, and time-saving, providing an alternative strategy for the semi-quantitative determination of TC on-site.

11.
ACS Appl Mater Interfaces ; 16(28): 36851-36861, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953487

RESUMEN

Since the discovery of aggregation-induced emission from tetraphenylethylene derivatives, various methods have been explored to prepare highly efficient multicolored luminescent materials. Herein, we report a simple and efficient strategy for constructing luminescent organic salts of the tetracationic luminogen, tetrapyridinium-tetraphenylethylene (T4Py-TPE4+), combined with seven di- and tetra-anionic aromatic sulfonate ligands. When aqueous solutions of the cationic luminogen and the anionic ligands were mixed, they rapidly aggregated into organic salts within seconds to minutes, giving yields of up to >90%. This was accompanied by an increase in the emission efficiency from ∼58% to almost 100%, and the ability to tune the emission color between 511 and 586 nm. These improvements were mainly attributed to the strong electrostatic attractions between the cation and anions, which resulted in the formation of a rigid hydrophobic network of the T4Py-TPE4+ luminogen with various π-conjugation lengths. Because these compounds are commercially available, this method opens the possibility of fabricating novel light-emitting materials for device fabrication and research.

12.
Chemistry ; : e202402438, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022852

RESUMEN

Photosynthesis is a complex multi-step process in which light collection is the initial step of photosynthesis and plays an important role in the efficiency of solar energy utilization. In order to improve the utilization of sunlight, researchers have developed a variety of artificial light-harvesting system to simulate photosynthesis in nature. Here, we report a supramolecular self-assembly artificial light-harvesting system in aqueous solution.  We modified ß-CD with the donor molecule naphthalimide and adamantane with the tetraphenylethylene molecule which has aggregation-induced emission effects (AIE). By using fluorescent molecules with AIE, the self-quenching effect caused by aggregation in aqueous solution can be effectively avoided. Due to the host-guest interaction of ß-CD and adamantane, nanoparticles with stable structure and uniform size can be spontaneously assembled in water. Because of the close distance and strong spectral overlap between naphthalimide and tetraphenylethylene, Förster resonance energy transfer (FRET) was realized, and artificial light-harvesting system was successfully constructed in aqueous solution. The light-harvesting system has a high energy transfer efficiency (ΦET). Therefore, this study provides a new strategy for constructing artificial light-harvesting system.

13.
Chem Asian J ; : e202400639, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008416

RESUMEN

The newly synthesized chiral active [5]helicene-like tetrabenzofluorene (TBF) based highly red-emitting molecules exhibit flower-like self-assembly. These molecules display photophysical and structural properties such as intramolecular charge transfer, dual state emission, large fluorescence  quantum yield, and solvatochromism. In TBFID, the indandione functional group attached on both sides as the terminal group offers an A-D-A push-pull effect and acts as a strong acceptor to cause more redshift in solution as well as in solid state as compared to TBFPA (TBF with benzaldehyde functional group in terminal position). The self-assembly studies of TBFID demonstrate the aggregation-induced emission enhancement (AIEE) attributed to the restriction of intramolecular rotation at the aggregated state. Furthermore, TBFID shows high quantum yield and intense red emission, making the molecule fit for organic light-emitting diodes (OLED) and bioimaging applications.

14.
Biosens Bioelectron ; 263: 116582, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39038401

RESUMEN

This study develops a series of NBI-based acidochromic AIEgens engineered for ultra-wide acidochromic scope in self-reporting soft actuators, establishing the relationship between the photophysical properties and structural configurations of the AIEgens, further investigating their acidochromic behavior and fabricating acidity monitoring chips. The acidochromic behaviors were thoroughly investigated, and high-precision acidity monitoring chips were fabricated. We confirmed the protonation order of nitrogen atoms within the molecules and elucidated the acidochromic mechanisms through DFT and 1H NMR analyses. Utilizing these findings, we designed acid-driven hydrogel-based biomimetic actuators that can self-report and control the release of heavy loads under acidic conditions. These actuators hold significant potential for applications in targeted drug delivery within acidic biological environments, controlled release systems, and specialized transportation of heavy loads under acidic conditions.

15.
Biosens Bioelectron ; 262: 116556, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996596

RESUMEN

The multiple-readout capability of multimodal detection enhances the flexibility, reliability, and accuracy of lateral flow immunoassay (LFIA). The conjugation of two different metal-organic frameworks (MOFs) as a new-generation composite material offers extraordinary opportunities for developing multimodal LFIA. It is anticipated to compensate limitations of traditional single colorimetric signal LFIA and improve the analysis performance. Herein, an ultra-bright fluorescent AIE-MOF was proposed and coupled with an in-situ growth of Prussian blue (PB) nanoparticles strategy to obtain a novel multimodal signal tracer (AIE-MOF@PB). Thereafter, it was successfully applied to develop the multimodal LFIA platform for the detection of nitrofurazone metabolites. The synergy of AIE-MOF and PB endows AIE-MOF@PB with superb water dispersibility, robust fluorescence emission, brilliant colorimetric signal, marvelous photothermal conversion, and enhanced antibody coupling efficiency, all of which facilitate a highly sensitive triple-readout LFIA platform. The detection sensitivity improved by at least 5-fold compared with the colloidal gold-based LFIA. This work not only inspires the rational design of aggregation-induced emission luminogens (AIEgen)-based complex materials but also highlights the promising potential in flexible point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Estructuras Metalorgánicas , Nitrofurazona , Estructuras Metalorgánicas/química , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Biosensibles/métodos , Nitrofurazona/análisis , Nitrofurazona/química , Humanos , Ferrocianuros/química , Colorimetría/métodos , Colorantes Fluorescentes/química
16.
Biosens Bioelectron ; 262: 116563, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013359

RESUMEN

Early and rapid diagnostic of acute myocardial infarction (AMI) during its developing stage is crucial due to its high fatality rate. Heart-type fatty acid binding protein (h-FABP) is an ideal biomarker for the quantitative diagnosis of AMI, surpassing traditional markers such as myoglobin, creatine phosphokinase-MB, and troponin in terms of sensitivity, specificity, and prognostic value. To obtain diagnostic and prognostic information, a precise and fully quantitative measurement of h-FABP is essential, typically achieved through an immunosorbent assay like the enzyme-linked immunosorbent assay. Nevertheless, this method has several limitations, including extended detection time, complex assay procedures, the necessity for skilled technicians, and challenges in implementing automated detection. This research introduces a novel biosensor, utilizing aggregation-induced emission nanoparticles (AIENPs) and integrated with a digital microfluidic (DMF) workstation, designed for the sensitive, rapid, and automated detection of h-FABP in low-volume serum samples. AIENPs and magnetic beads in nanoscale were served as the capture particles and the fluorescent probe, which were linked covalently to anti-h-FABP antibodies respectively. The approach was based on a sandwich immunoassay and performed on a fully automated DMF workstation with assay time by 15 min. We demonstrated the determination of h-FABP in serum samples with detection limit of 0.14 ng/mL using this biosensor under optimal condition. Furthermore, excellent correlations (R2 = 0.9536, n = 50) were obtained between utilizing this biosensor and commercialized ELISA kits in clinical serum detecting. These results demonstrate that our flexible and reliable biosensor is suitable for direct integration into clinical diagnostics, and it is expected to be promising diagnostic tool for early detection and screening tests as well as prognosis evaluation for AMI patients.


Asunto(s)
Técnicas Biosensibles , Proteína 3 de Unión a Ácidos Grasos , Infarto del Miocardio , Nanopartículas , Técnicas Biosensibles/instrumentación , Humanos , Proteína 3 de Unión a Ácidos Grasos/sangre , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/sangre , Nanopartículas/química , Límite de Detección , Biomarcadores/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Microfluídica/métodos , Diseño de Equipo , Anticuerpos Inmovilizados/química , Ensayo de Inmunoadsorción Enzimática
17.
Biosens Bioelectron ; 262: 116573, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39018976

RESUMEN

Drug-induced liver injury (DILI) poses a severe threat to public health. Endoplasmic reticulum (ER) stress contributes significantly to DILI pathogenesis, with peroxynitrite (ONOO-) identified as a pivotal indicator. However, the temporal and spatial fluctuations of ONOO- associated with ER stress in the pathogenesis of DILI remain unclear. Herein, a novel ER-specific near-infrared (NIR) probe (QM-ONOO) with aggregation-induced emission (AIE) features for monitoring ONOO- fluctuations in DILI was elaborately constructed. QM-ONOO exhibited excellent ER-targeting specificity, a large Stoke's shift, and a low detection limit (26.9 nM) toward ONOO-. QM-ONOO performed well in imaging both exogenous and endogenous ONOO- in HepG2 cells. Furthermore, molecular docking calculations validated the ER-targeting mechanism of QM-ONOO. Most importantly, using this probe allowed us to intuitively observe the dynamic fluctuations of ONOO- during the formation and remediation processes of DILI in the acetaminophen (APAP)-induced mouse model. Consequently, this work provides a promising tool for in-depth research of ONOO- associated pathological processes in DILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Retículo Endoplásmico , Colorantes Fluorescentes , Ácido Peroxinitroso , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/química , Humanos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colorantes Fluorescentes/química , Retículo Endoplásmico/metabolismo , Ratones , Células Hep G2 , Acetaminofén/toxicidad , Acetaminofén/efectos adversos , Técnicas Biosensibles/métodos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Simulación del Acoplamiento Molecular , Imagen Óptica/métodos
18.
Small ; : e2403788, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994674

RESUMEN

0D organic-inorganic metal halides (OIMHs) provide unprecedented versatility in structures and photoluminescence properties. Here, a series of bluish-white emissive 0D OIMHs, (TPE-TPP)2Sb2BrxCl8-x (x = 1.16 to 8), are prepared by assembling the 1-triphenylphosphonium-4-(1,2,2-triphenylethenyl)benzene cation (TPE-TPP)+ with antimony halides anions. Based on experimental characterizations and theoretical calculations, the emission of the 0D OIMHs are attributed to the fluorescence of the organic cations with aggregation-induced emission (AIE) properties. The 0D structure minimized the molecular motion and intermolecular interactions between (TPE-TPP)+ cations, effectively suppressing the non-radiative recombination processes. Consequently, the photoluminescence quantum efficiency (PLQE) of (TPE-TPP)2Sb2Br1.16Cl6.84 is significantly enhanced to 55.4% as compared to the organic salt (TPE-TPP)Br (20.5%). The PLQE of (TPE-TPP)2Sb2BrxCl8-x can also be readily manipulated by halide substitution, due to the competitive processes between non-radiative recombination on the inorganic moiety and the energy transfer from inorganic to organic. In addition, electrically driven light-emitting diodes (LEDs) are fabricated based on (TPE-TPP)2Sb2Br1.16Cl6.84 emitter, which exhibited bluish-white emission with a maximum external quantum efficiency (EQE) of 1.1% and luminance of 335 cd m-2. This is the first report of electrically driven LED based on 0D OIMH with bluish-white emission.

19.
ChemMedChem ; : e202400311, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973697

RESUMEN

Target-based high-throughput screening (HTS) is an efficient way to identify potent drugs. However, the accuracy of HTS could be affected by Pan-Assay Interference Compounds (PAINS). One reason for the generation of PAINS is that the inherent photophysical property of screened compounds could interfere with typically used assay signals including absorption and fluorescence. Our previous studies indicate that the fluorescent probe based on the fluorophore with characteristics of aggregation-induced emission (AIE) could provide high accuracy of HTS, especially for the fluorescent natural products. Herein, we report an AIE-based fluorescent probe for the main protease (Mpro) of SARS-CoV-2. We designed and synthesized an AIE fluorescent probe ZLHG5, which has a site that can be specifically cleaved by Mpro to produce a light-up fluorescence. Thanks to the large Stokes shift of AIE fluorophore (~300 nm), the probe could be effectively used for HTS of Mpro inhibitors. After screening a library of fluorescent natural products with ZLHG5, we obtained two coumarin-originated natural compounds with potent inhibitory activity towards Mpro protease. This study provides both useful fluorescent HTS probe and potent inhibitors for Mpro protease.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124827, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39029205

RESUMEN

Two helical Schiff base compounds (H4TPA and H4TPE) containing a triphenylamine (TPA) or tetraphenylethylene (TPE) scaffold were successfully synthesized and characterized. Both H4TPA and H4TPE exhibited typical aggregation-induced emission characteristics in the mixed solvent of THF/H2O. The two compounds also showed high selectivity and sensitivity for the recognition of Cu2+ over other ions in THF/HEPES (1:4, V/V, pH = 7.4, 2.0 × 10-5 M), and could be used as turn-off fluorescent probes for Cu2+. The stoichiometric ratios and association constants were estimated via Job's plots and UV-vis spectra titration, and the detection limits of H4TPA and H4TPE toward Cu2+ were calculated to be 2.41 × 10-7 M and 1.38 × 10-7 M, respectively. Besides, the crystal structure of the complex obtained from the interaction of H4TPA with Cu2+ well illustrated the binding modes, which helped us understand the Cu2+ recognition mechanism of H4TPA and H4TPE. Moreover, the detection of Cu2+ and spiked recovery experiments were carried out, which indicated that the two probes can be applied to Cu2+ detection in real samples with satisfactory recoveries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA