Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.195
Filtrar
Más filtros

Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093299

RESUMEN

To thrive on melting alpine and polar snow, some Chlorophytes produce an abundance of astaxanthin, causing red blooms, often dominated by genus Sanguina. The red cells have not been cultured, but we recently grew a green biciliate conspecific with Sanguina aurantia from a sample of watermelon snow. This culture provided source material for Oxford Nanopore Technology and Illumina sequencing. Our assembly pipeline exemplifies the value of a hybrid long- and short-read approach for the complexities of working with a culture grown from a field sample. Using bioinformatic tools we separated assembled contigs into two genomic pools based on a difference in GC content (57.5% and 55.1%). We present the data as two assemblies of S. aurantia variants but explore other possibilities. High-throughput chromatin conformation capture analysis (Hi-C sequencing) was used to scaffold the assemblies into a 96 MB genome designated 'A' and a 102 MB genome designated 'B'. Both assemblies are highly contiguous: genome A consists of 38 scaffolds with an N50 of 5.4 Mb while genome B has 50 scaffolds with an N50 of 6.4 Mb. RNA-sequencing was used to improve gene annotation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39088172

RESUMEN

The introduction of hydrogen into the engine could enhance its combustion efficiency and emission characteristics. The current study examines the attributes of compression ignition (CI) engines by introducing hydrogen into a biodiesel blend derived from algae. The improved thermal properties of hydrogen, when combined with algae biodiesel, significantly affect the performance, combustion, and emissions of dual-fuel engines. A study was conducted to evaluate the impact of hydrogen enrichment levels of 5%, 10%, 15%, and 20% of the nozzle volume on a biodiesel blend fuel. In comparison to diesel, algal biodiesel reduces emissions of unburned hydrocarbons (HC), carbon monoxide (CO), and oxygen (O2) by 5.19%, 3.61%, and 2.83%, respectively, while increasing nitrogen oxide (NO) emissions by 4.73%. In contrast to biodiesel, diesel demonstrated superior brake thermal efficiency (BTE) and lower specific energy consumption (SEC). Injecting hydrogen into A20 blend fuel at volumes of 5%, 10%, 15%, and 20% results in a respective increase in brake thermal efficiency of 2.65%, 2.97%, 3.50%, and 4.15%. The addition of hydrogen gas to biodiesel blends further enhances their combustion qualities, leading to elevated peak cylinder pressure, temperature, and heat release rate. The results indicate that A20H5, A20H10, A20H15, and A20H20 fuel reduced CO emissions by 3.75%, 8.75%, 12.5%, and 16.25%, respectively, compared to the A20 blend. In the same vein, HC emissions decreased by 5.76%, 10.29%, 15.52%, and 18.98%, respectively, as compared to A20 fuel. However, NO emissions rose by 5.36%, 10.20%, 15.28%, and 23.23%, respectively, for A20H5, A20H10, A20H15, and A20H20 test fuels. Ultimately, the utilization of algal biodiesel and hydrogen enrichment in diesel engines was proven to substantially reduce pollutants while increasing efficiency. This study contributes valuable insights into the intersection of renewable fuels, hydrogen enrichment, and engine technology, with the potential to drive significant advancements in sustainable transportation and environmental conservation.

3.
Biodivers Data J ; 12: e122350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092448

RESUMEN

Background: The Costa das Algas Environmental Protection Area (EPA) and the Santa Cruz Wildlife Refuge (WR), located in the Espírito Santo Continental Shelf, Brazil, are outstanding marine protected areas due to their high biodiversity, particularly of macroalgae. Together, these two relatively small protected areas (1,150 and 177 km2, respectively) harbour about a quarter of all macroalgal species recorded in Brazil.The checklist presented herein updates the algal flora of these two protected areas with data obtained until 2019. Two hundred and sixty-five macroalgal taxa were recorded, most of which with vouchers. Checklists based on the collections of each protected area were published on: "Catálogo de Plantas das Unidades de Conservação do Brasil" (https://catalogo-ucs-brasil.jbrj.gov.br/). New information: Besides specimens collected between 2018 and 2019, the algal flora presented herein includes previous records from different Brazilian herbaria (e.g., SP, SPF, ALCB). Herbaria records may include species that do not occur in intertidal reefs (e.g., Laminaria). Overall, 249 macroalgal taxa and one marine angiosperm were recorded in the Costa das Algas EPA (87 new records) and 136 macroalgal taxa and one marine angiosperm in the Santa Cruz WR (46 new records). All taxa are native to Brazil and nine are endemic to Brazil. Our results provide a taxonomic foundation to support management, long-term monitoring and conservation in these protected areas.

4.
Environ Monit Assess ; 196(8): 761, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39048811

RESUMEN

This study explored the algae, zooplankton, macroinvertebrate, fish, and parasitic single-celled organism communities in Larus crassirostris (black-tailed gull) fecal samples from Baengnyeongdo, Hongdo, and Ulleungdo in South Korea. The fecal samples can identify key species consumed by black-tailed gull, providing insights into their, trophic interactions, and habitat dependencies. Using DNA metabarcoding, we identified algae, zooplankton, macroinvertebrate, fish, and intestinal and single-celled parasite species in the fecal samples. Parasitic single-celled organisms, such as Rhogostoma sp., Rhogostoma schuessleri, Eimeria furonis, and Aggregata eberthi, showed differing relative abundances at each sampling location, indicating variability in parasite diversity in the fecal DNA analysis of birds at each site. Intestinal parasites showed similar site-specific variability, though Clistobothrium sp. and Tetrabothrius sp. were common at all locations. Algae species, including Heterocapsa steinii, Heterocapsa niei, and Sargassum cristaefolium, also displayed habitat-specific patterns, as did zooplankton, with Calanus sp., Corycaeus speciosus, and Caprella californica being dominant on Baengnyeongdo, Hongdo, and Ulleungdo, respectively. In the macroinvertebrate communities, Octopus sinensis was prevalent at all locations but at varying abundances. Site-specific dominant fish species were also identified, with Ammodytes personatus, Decapterus maruadsi, and Arctoscopus japonicus highly predominant on Baengnyeongdo, Hongdo, and Ulleungdo, respectively. Other fish species, such as Ammodytes hexapterus, were detected in lower frequencies, suggesting a diverse diet for the seabirds. These results offer insights into the species composition and ecological dynamics in black-tailed gull populations across disparate Korean islands.


Asunto(s)
Charadriiformes , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Heces , Peces , Cadena Alimentaria , Animales , República de Corea , Zooplancton , Ecosistema
5.
Mol Phylogenet Evol ; 199: 108140, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38981554

RESUMEN

Cryptic diversity abounds in many biological species, posing challenges to our understanding of biological diversity, conservation and management. Taking the common coralline algae, the subfamily Lithophylloideae as an illustration, this study delved into the implications of cryptic diversity through global-level phylogenetic and geographical analysis based upon Lithophylloideae molecular data worldwide, as well as a multi-locus time-calibrated phylogeny to elucidate their possible evolutionary process. The multiscale analysis revealed the polyphyly in current concept of the genus Lithophyllum. Geographic isolation resulting from the Tethys terminal event (TTE) has led to two distinct distribution regions for this so-called cosmopolitan genus: one regionally distributed along European coasts/Mediterranean that should include the taxonomical Lithophyllum; others widely distributed, particularly among pan-tropic waters, suggesting at least five groups to be rediscovered within the subfamily Lithophylloideae. Meanwhile, the cryptic genus Titanoderma, lacking morphological identification features with Lithophyllum, exhibited differences in distribution and evolutionary patterns consistent with their ecological habits, thus supporting their separation. This study provided useful hints for cryptic diversity, which advocated an integrative thinking to investigating global cryptic diversity and exploring the broad linkages between phylogenetic relationships and evolutionary origin, biogeography, morphological and ecological traits to achieve a more comprehensive understanding of biodiversity.

6.
Chemosphere ; 363: 142908, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033863

RESUMEN

This work reports the synthesis of nickel ferrite (NiFe) nanoparticles, N-doped mesoporous carbon nanoflakes (NCF) and novel nickel ferrite-carbon nanoflakes (NiFe@NCF) nanocomposite using solvothermal method. NCF was derived from a cyanobacterial consortium consisting of Anabaena, Lyngbya and Weistiellopsis, rich in carbon and nitrogen. The synthesized nanoparticles were used as heterogeneous photocatalyst for degradation of two harmful water pollutants, ciprofloxacin (CIP) and levofloxacin (LEV). 99.91% LEV and 98.86% CIP were degraded within 50 and 70 min of visible light irradiation using NiFe@NCF following pseudo first order kinetics. This improved efficiency of the nanocomposite may be attributed to its higher surface area, reduction of band gap (from 2.42 to 2.19 eV), more active sites as well as charge carrier mobility with decreasing agglomeration tendency of the magnetic nickel nanoparticles upon being embedded on NCF. N-doping improves light harvesting property, retards charge recombination and extends as well as delocalises á´¨-conjugated system resulting in enhanced photocatalytic activity. The scavenging experiments and EPR analysis reveal that O2-• and •OH are the main active species taking part in the degradation process. The material performs well within a wide range of pH and can be effectively used up to 5 repetitive cycles. A feasible photocatalytic degradation mechanism of the antibiotics against NiFe@NCF nanocomposite is also put forwarded along with their possible degradation pathways from LCMS studies.

7.
Plant Cell Environ ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047015

RESUMEN

Prevalent interactions among marine phytoplankton triggered by long-range climatic stressors are well-known environmental disturbers of community structure. Dynamic response of phytoplankton physiology is likely to come from interspecies interactions rather than direct climatic effect on single species. However, studies on enigmatic interactions among interspecies, which are induced by bioactive extracellular compounds (BECs), especially between related harmful algae sharing similar shellfish toxins, are scarce. Here, we investigated how BECs provoke the interactions between two notorious algae, Alexandrium minutum and Gymnodinium catenatum, which have similar paralytic shellfish toxin (PST) profiles. Using techniques including electron microscopy and transcriptome analysis, marked disruptions in G. catenatum intracellular microenvironment were observed under BECs pressure, encompassing thylakoid membrane deformations, pyrenoid matrix shrinkage and starch sheaths disappearance. In addition, the upregulation of gene clusters responsible for photosystem-I Lhca1/4 and Rubisco were determined, leading to weaken photon captures and CO2 assimilation. The redistribution of lipids and proteins occurred at the subcellular level based on in situ focal plane array FTIR imaging approved the damages. Our findings illuminated an intense but underestimated interspecies interaction triggered by BECs, which is responsible for dysregulating photosynthesis and organelle function in inferior algae and may potentially account for fitness alteration in phytoplankton community.

8.
J Sci Food Agric ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989609

RESUMEN

BACKGROUND: Algae oil has garnered widespread acclaim due as a result of its high purity of docosahexaenoic acid (DHA) and excellent safety profile. The present study aimed to develop stable nanoemulsions (NEs) systems containing DHA from algae oil through thermal sterilization by combining modified whey protein concentrate (WPC) with low methoxyl pectin (LMP), as well as to investigate the impact of LMP concentration on the thermal stability and the gastrointestinal delivery efficiency of DHA NEs. RESULTS: The addition of LMP enhanced the stability of the emulsion after sterilization, at the same time as improving the protective and sustained release effects of DHA in the gastrointestinal tract. Optimal effect was achieved at a LMP concentration of 1% (10 g kg-1 sample), the stability of the emulsion after centrifugation increased by 17.21 ± 5.65% compared to the group without LMP, and the loss of DHA after sterilization decreased by only 0.92 ± 0.09%. Furthermore, the addition of 1% LMP resulted in a substantial reduction in the release of fatty acids from the NEs after gastrointestinal digestion simulation, achieving the desired sustained-release effect. However, excessive addition of 2% (20 g kg-1 sample) LMP negatively impacted all aspects of the NEs system, primarily because of the occurrence of depletion effects. CONCLUSION: The construction of the LMP/WPC-NEs system is conducive to the protection of DHA in algae oil and its sustained-release in the gastrointestinal tract. The results of the present study can provide reference guidance for the application of algae oil NEs in the food field. © 2024 Society of Chemical Industry.

9.
Environ Geochem Health ; 46(8): 300, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990399

RESUMEN

This study investigated microplastic (MP) contamination in conventional sea salt farming systems. Various crude sea salt samples (n = 22) that were traditionally produced were collected from salt farms and local vendors. Salt water (n = 15), macroalgae (n = 6), and clay of pond floors (n = 6) were collected from ponds subjected to different production (stabilization, evaporation, and concentration and crystallization concentration) processes. All samples were analyzed for MP abundance and characteristics. The potential sources of MP contamination in the salt were also investigated. The mean abundance of MPs in the salt water and clay of pond floor increased progressively throughout the production process and reached its highest level in the concentration and crystallization ponds (7400 MP particles/m3 in salt water and 19,336 MP particles/m2 in the clay of the pond floor). A maximum of 26,500 MP particles/kg of macroalgal material indicated the potential sink of MPs on the surface of the algae. Approximately 34-2377 MP particles/kg salt were found in the crude sea salt samples. However, the mean abundance (378 MP particles/kg of salt) indicated nonsignificant impacts of different harvesting processes on MP contamination. Most MP size distributions, shapes and polymer types in the salts were similar to those found in the salt water, macroalgae and clay of the pond floor. Approximately 99% of the MPs were fragments that were suspected to be decomposed from larger plastic debris and plastic machinery and tools used at the salt farm. Similar patterns of polymer distribution, in which PP > PE > PET > PS, were found for all samples studied.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Monitoreo del Ambiente/métodos , Acuicultura , Algas Marinas/química , Cloruro de Sodio/química , Cloruro de Sodio/análisis , Tamaño de la Partícula
10.
Bioresour Technol ; 407: 131115, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013480

RESUMEN

This study developed a microelectrolysis-integrated constructed wetland with pyrite filler around the cathode (e-PCW) to treat eutrophic water. Results indicated that e-PCW effectively enhanced pyrite dissolution, converting solid-phase electron donors into bioavailable forms, thereby facilitating the enrichment of various denitrifying bacteria on pyrite surfaces. Importantly, iron-reducing and sulfur-reducing bacteria attached to the pyrite surfaces enhanced the conversion of ferric iron and sulfate, thereby driving iron and sulfur cycles and promoting electron transfer. Therefore, synergistic effects of pyrite and microelectrolysis made e-PCW achieve higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies. With a hydraulic retention time of 24 h, the highest removal efficiencies of TN and TP achieved 78% and 75%, respectively. Furthermore, when eutrophic water containing high concentration of algae was fed into e-PCW, it consistently demonstrated superior TN and TP removal capabilities. This work provides a valuable approach to optimizing constructed wetland technology for treating eutrophic water.

11.
Water Res ; 261: 122063, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39003876

RESUMEN

Microbial manganese (Mn) oxidation, predominantly occurs within the anaerobic-aerobic interfaces, plays an important role in environmental pollution remediation. The anaerobic-aerobic transition zones, notably riparian and lakeside zones, are hotspots for algae-bacteria interactions. Here, we adopted a Mn(II)-oxidizing bacterium Pseudomonas sp. QJX-1 to investigate the impact of algae on microbial Mn(II) oxidation and verify the underlying mechanisms. Interestingly, we achieved a remarkable enhancement in bacterial Mn(II)-oxidizing activity within the algae-bacteria co-culture, despite the inability to oxidize Mn(II) for the algae used in this study. In addition, the bacterial density almost remains constant in the presence of algal cells. Therefore, the increased Mn(II) oxidation by QJX-1 in the presence of algae cannot be due to the increased biomass. Within this co-culture system, the Mn(II) oxidation rate surged to an impressive 0.23 mg/L/h, in stark contrast to 0.02 mg/L/h recorded within pure QJX-1 system. The presence of algae could inhibit the Fe-S cluster activity of QJX-1 by the produced active substance in co-culture, and result in the acceleration of extracellular superoxide production due to the impairment of electron transfer functions located in QJX-1 cell membranes. Moreover, elevated peroxidase gene expression and heightened extracellular catalase activity not only expedited Mn(II) ions oxidation but also facilitated conversion of intermediate Mn(III) ions into microbial Mn oxides, achieved through the degradation of hydrogen peroxide. Therefore, the acceleration of extracellular superoxide production and the decomposition of hydrogen peroxide are identified as the principal mechanisms behind the observed enhancement in Mn(II) oxidation within algae-bacteria co-cultures. Our findings highlight the need to consider the effect of algae on microbial Mn(II) oxidation, which plays an important role in the environmental pollution remediation.

12.
Front Microbiol ; 15: 1396949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993493

RESUMEN

Introduction: Campylobacter jejuni gastroenteritis is the most commonly reported zoonosis within the EU, with poultry products regarded as the primary source of transmission to humans. Therefore, finding strategies to reduce Campylobacter colonization in broilers holds importance for public health. Recent studies suggest that supplementation of broiler feed with brown algal extracts, particularly laminarin, can provide beneficial effects on broiler gut health, growth performance, and gut microbiota. However, its effect on gut microbiota development and subsequent reduction of Campylobacter loads in broiler caeca during the later stages of the birds' lives remains unclear. Methods: Experimental colonization of Ross 308 broilers with two different strains of C. jejuni was conducted, with groups fed either a basal diet or the same basal diet supplemented with 725 ppm algal extract from Saccharina latissima to provide 290 ppm laminarin. Fecal samples were collected for bacterial enumeration, and caecal samples were obtained before and after the C. jejuni challenge for the determination of microbiota development. Results and discussion: No significant differences in fecal C. jejuni concentrations between the groups fed different diets or exposed to different C. jejuni strains were observed. This suggests that both strains colonized the birds equally well and that the laminarin rich algal extract did not have any inhibitory effect on C. jejuni colonization. Notably, 16S rRNA amplicon sequencing revealed detailed data on the caecal microbiota development, likely influenced by both bird age and C. jejuni colonization, which can be valuable for further development of broiler feed formulations aimed at promoting gut health.

13.
Nanomedicine (Lond) ; : 1-13, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011923

RESUMEN

Aim: Cu2O nanoparticles were synthesized using an extract from S. latifolium algae (SLCu2O NPs). Their effect on PANC-1 cells and the expression of two drug resistance-related lncRNAs were evaluated in comparison with Arsenic trioxide. Materials & methods: SLCu2O NPs were characterized using XRD, SEM, and TEM microscopies. The effects of SLCu2O NPs on cell cytotoxicity, cell cycle, and apoptosis, and expression of two drug resistance-related lncRNAs were examined using MTT assay, flow cytometry, and real-time PCR, respectively. Results: SLCu2O NPs demonstrated anti-cancer properties against PANC-1 cells comparable to Arsenic trioxide, and the expression of lncRNAs increased upon treatment with them. Conclusion: SLCu2O NPs demonstrate anti-cancer properties against PANC-1 cells; however, using gene silencing strategies along with SLCu2O NPs is suggested.


[Box: see text].

14.
Microbiol Spectr ; : e0021924, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012118

RESUMEN

Interactions between photosynthetic microalgae and bacteria impact the physiology of both partners, which influence the fitness and ecological trajectories of each partner in an environmental context-dependent manner. Thermal tolerance of Chlamydomonas reinhardtii can be enhanced through a mutualistic interaction with vitamin B12 (cobalamin)-producing Sinorhizobium meliloti. Here, we used label-free quantitative proteomics to reveal the metabolic networks altered by the interaction under normal and high temperatures. We created a scenario where the growth of Sinorhizobium requires carbon provided by Chlamydomonas for growth in co-cultures, and survival of Chlamydomonas under high temperatures relies on cobalamin and possibly other metabolites produced by Sinorhizobium. Differential abundance analysis identified proteins produced by each partner in co-cultures compared to mono-cultures at each temperature. Proteins involved in cobalamin production by Sinorhizobium increased in the presence of Chlamydomonas under elevated temperatures, whereas in Chlamydomonas, there was an increase in cobalamin-dependent methionine synthase and certain proteins associated with methylation reactions. Co-cultivation and heat stress strongly modulated the central metabolism of both partners as well as various transporters that could facilitate nutrient cross-utilization. Co-cultivation modulated expression of various components of two- or one-component signal transduction systems, transcriptional activators/regulators, or sigma factors, suggesting complex regulatory networks modulate the interaction in a temperature-dependent manner. Notably, heat and general stress-response and antioxidant proteins were upregulated in co-cultures, suggesting that the interaction is inherently stressful to each partner despite the benefits of mutualism. Our results shed insight into the metabolic tradeoffs required for mutualism and how metabolic networks are modulated by elevated temperature. IMPORTANCE: Photosynthetic microalgae are key primary producers in aquatic ecosystems, playing an important role in the global carbon cycle. Nearly every alga lives in association with a diverse community of microorganisms that influence each other and their metabolic activities or survival. One chemical produced by bacteria that influence algae is vitamin B12, an enzyme cofactor used for a variety of metabolic functions. The alga Chlamydomonas reinhardtii benefits from vitamin B12 produced by Sinorhizobium meliloti by producing the amino acid methionine under high temperatures which are required for Chlamydomonas thermotolerance. Yet, our understanding of this interaction under normal and stressful temperatures is poor. Here, we used quantitative proteomics to identify differentially expressed proteins to reveal metabolic adjustments made by Chlamydomonas and Sinorhizobium that could facilitate this mutualism. These findings will enhance our understanding of how photosynthetic algae and their associated microbiomes will respond as global temperatures increase.

15.
Fish Shellfish Immunol ; 151: 109754, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977113

RESUMEN

Copper (Cu) is a crucial element that plays a vital role in facilitating proper biological activities in living organisms. In this study, copper oxide nanoparticles (CuO NPs) were synthesized using a straightforward precipitation chemical method from a copper nitrate precursor at a temperature of 85 °C. Subsequently, these NPs were coated with the aqueous extract of Sargassum angustifolium algae. The size, morphology, and coating of the NPs were analyzed through various methods, revealing dimensions of approximately 50 nm, a multidimensional shaped structure, and successful algae coating. The antibacterial activity of both coated and uncoated CuO NPs against Vibrio harveyi, a significant pathogen in Litopenaeus vannamei, was investigated. Results indicated that the minimum inhibitory concentration (MIC) for uncoated CuO NPs was 1000 µg/mL, whereas for coated CuO NPs, it was 500 µg/mL. Moreover, the antioxidant activity of the synthesized NPs was assessed. Interestingly, uncoated CuO NPs exhibited superior antioxidant activity (IC50 ≥ 16 µg/mL). The study also explored the cytotoxicity of different concentrations (10-100 µg/mL) of both coated and uncoated CuO NPs. Following 48 h of incubation, cell viability assays on shrimp hemocytes and human lymphocytes were conducted. The findings indicated that CuO NPs coated with alga extract at a concentration of 10 µg/mL increased shrimp hemocyte viability. In contrast, uncoated CuO NPs at a concentration of 25 µg/mL and higher, as well as CuO NPs at a concentration of 50 µg/mL and higher, led to a decrease in shrimp hemocyte survival. Notably, this study represents the first quantitative assessment of the toxicity of CuO NPs on shrimp cells, allowing for a comparative analysis with human cells.


Asunto(s)
Cobre , Nanopartículas del Metal , Penaeidae , Sargassum , Vibrio , Animales , Cobre/química , Cobre/farmacología , Penaeidae/efectos de los fármacos , Vibrio/efectos de los fármacos , Sargassum/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Acuicultura , Pruebas de Sensibilidad Microbiana , Hemocitos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química
16.
Front Cell Dev Biol ; 12: 1406966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994454

RESUMEN

Septins are a family of membrane-associated cytoskeletal guanine-nucleotide binding proteins that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that membrane binding is an ancestral trait. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.

17.
Food Chem ; 460(Pt 1): 140492, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032289

RESUMEN

Currently, there are no commercially available plant-based products that replicate the flavor profile of roasted fish. As the increasing demand of plant-based meat in the recent years, the exploration of plant-based meat flavors holds significant importance. This study revealed that a blend of lysine, leucine, glutamic acid, alanine, cysteine, glucose, and algae oil (rich in docosahexaenoic acid, DHA), when subjected to heating in low pH, generated the distinct flavor like roasted mackerel. The precursor, mechanism and flavor note were investigated. Key aromatic compounds such as isovaleric acid, octanoic acid, 1,5-octadien-3-one, 2,4-octadienal, 2-octenal, furaneol, 2,5-furandicarboxaldehyde, and 2-pentenylfuran were found as important contributors in the reaction flavor model. These compounds primarily derived from heat-induced lipid oxidation, lipid degradation, and Maillard reaction of these plant-based ingredients. The development of plant-based meat flavors is crucial for promoting the substantial progress of plant-based meat products.

18.
J Environ Manage ; 366: 121720, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972186

RESUMEN

The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.

19.
Ecotoxicol Environ Saf ; 282: 116727, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024948

RESUMEN

Nanophycology is recognized as one of the most important and widely used interdisciplinary sciences by creating a connection between nanotechnology on the one hand and phycology on the other hand. Algal nanoparticle biosynthesis is a starting point in studies and research related to nanophycology. Nanophycology consists of two parts, nano and phycology, and by taking advantage of the high potential of algae such as high biological safety, easy production, fast growth, and high stability in the phycology part of this science, which is also known as algology, algae nanoparticles synthesis and make this section related to nanotechnology. In this way, algae are known as factories of biological nanomaterials and cause the production of bio-stable nanotechnology and the removal of environmental pollutants released due to nanochemistry. Nanotechnology produced by algae in the science of nanophycology, due to algae's unique physical and chemical properties compared to other biological entities such as plants, fungi, and bacteria, is used in various fields including medicine, biorefining, purification Water, etc. In this review article, the most important goals of the science of nanophycology, including the biosynthesis of algal nanoparticles and the potential of these compounds in various fields of application, have been examined and discussed.

20.
Sci Total Environ ; 946: 174352, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38969108

RESUMEN

Marine plastic debris (MPD) is a potential threat to marine ecosystems, but its function as a vector for the transportation of harmful microalgae and its impact on the habitats of other marine organisms are uncertain. To address this gap in knowledge, we performed month-long experiments in 30 L microcosms that contained plates made of six different plastic polymers (polypropylene [PP], low-density polyethylene [LDPE], high-density polyethylene [HDPE], polyvinyl chloride [PVC], polyethylene terephthalate [PET], and polystyrene [PS]), and examined the time course of changes in planktonic and periphytic microalgae. There were no significant differences in the composition of periphytic microalgae or biomass among the different plastic polymers (p > 0.05). Nutrient depletion decreased the abundance of planktonic microalgae, but increased the biomass of attached periphytic microalgae (p < 0.05). In particular, analysis of the plastic plates showed that the abundance of benthic species that are responsible for harmful algal blooms (HABs), such as Amphidinium operculatum and Coolia monotis, significantly increased over time (days 21-28; p < 0.05). Our findings demonstrated that periphyton species, including benthic microalgae that cause HABs, can easily attach to different types of plastic and potentially spread to different regions and negatively impact these ecosystems. These observations have important implications for understanding the potential role of MPD in the spread of microalgae, including HABs, which pose a significant threat to marine ecosystems.


Asunto(s)
Biomasa , Microalgas , Plásticos , Plásticos/análisis , Floraciones de Algas Nocivas , Contaminantes Químicos del Agua/análisis , Nutrientes/análisis , Monitoreo del Ambiente , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA