Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 131(2): 379-393, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198664

RESUMEN

Local vibration (LV) applied over the muscle tendon constitutes a powerful stimulus to activate the muscle spindle primary (Ia) afferents that project to the spinal level and are conveyed to the cortical level. This study aimed to identify the neuromuscular changes induced by a 30-min LV-inducing illusions of hand extension on the vibrated flexor carpi radialis (FCR) and the antagonist extensor carpi radialis (ECR) muscles. We studied the change of the maximal voluntary isometric contraction (MVIC, experiment 1) for carpal flexion and extension, motor-evoked potentials (MEPs, experiment 2), cervicomedullary motor-evoked potentials (CMEPs, experiment 2), and Hoffmann's reflex (H-reflex, experiment 3) for both muscles at rest. Measurements were performed before (PRE) and at 0, 30, and 60 min after LV protocol. A lasting decrease in strength was only observed for the vibrated muscle. The reduction in CMEPs observed for both muscles seems to support a decrease in alpha motoneurons excitability. In contrast, a slight decrease in MEPs responses was observed only for the vibrated muscle. The MEP/CMEP ratio increase suggested greater cortical excitability after LV for both muscles. In addition, the H-reflex largely decreased for the vibrated and the antagonist muscles. The decrease in the H/CMEP ratio for the vibrated muscle supported both pre- and postsynaptic causes of the decrease in the H-reflex. Finally, LV-inducing illusions of movement reduced alpha motoneurons excitability for both muscles with a concomitant increase in cortical excitability.NEW & NOTEWORTHY Spinal disturbances confound the interpretation of excitability changes in motor areas and compromise the conclusions reached by previous studies using only a corticospinal marker for both vibrated and antagonist muscles. The time course recovery suggests that the H-reflex perturbations for the vibrated muscle do not only depend on changes in alpha motoneurons excitability. Local vibration induces neuromuscular changes in both vibrated and antagonist muscles at the spinal and cortical levels.


Asunto(s)
Ilusiones , Humanos , Electromiografía/métodos , Ilusiones/fisiología , Vibración , Músculo Esquelético/fisiología , Tendones/fisiología , Potenciales Evocados Motores/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos
2.
FEBS J ; 288(18): 5331-5349, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33730374

RESUMEN

Motoneurons (MNs) control muscle activity by releasing the neurotransmitter acetylcholine (ACh) at the level of neuromuscular junctions. ACh is packaged into synaptic vesicles by the vesicular ACh transporter (VAChT), and disruptions in its release can impair muscle contraction, as seen in congenital myasthenic syndromes (CMS). Recently, VAChT gene mutations were identified in humans displaying varying degrees of myasthenia. Moreover, mice with a global deficiency in VAChT expression display several characteristics of CMS. Despite these findings, little is known about how a long-term decrease in VAChT expression in vivo affects MNs structure and function. Using Cre-loxP technology, we generated a mouse model where VAChT is deleted in select groups of MNs (mnVAChT-KD). Molecular analysis revealed that the VAChT deletion was specific to MNs and affected approximately 50% of its population in the brainstem and spinal cord, with alpha-MNs primarily targeted (70% in spinal cord). Within each animal, the cell body area of VAChT-deleted MNs was significantly smaller compared to MNs with VAChT preserved. Likewise, muscles innervated by VAChT-deleted MNs showed atrophy while muscles innervated by VAChT-containing neurons appeared normal. In addition, mnVAChT KD mice had decreased muscle strength, were hypoactive, leaner and exhibited kyphosis. This neuromuscular dysfunction was evident at 2 months of age and became progressively worse by 6 months. Treatment of mutants with a cholinesterase inhibitor was able to improve some of the motor deficits. As these observations mimic what is seen in CMS, this new line could be valuable for assessing the efficacy of potential CMS drugs.


Asunto(s)
Acetilcolina/genética , Neuronas Motoras/metabolismo , Síndromes Miasténicos Congénitos/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/patología , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Neurotransmisores/genética , Médula Espinal/metabolismo , Médula Espinal/fisiología , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA