Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 738
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39337454

RESUMEN

This review offers an in-depth examination of amyotrophic lateral sclerosis (ALS), addressing its epidemiology, pathophysiology, clinical presentation, diagnostic techniques, and current as well as emerging treatments. The purpose is to condense key findings and illustrate the complexity of ALS, which is shaped by both genetic and environmental influences. We reviewed the literature to discuss recent advancements in understanding molecular mechanisms such as protein misfolding, mitochondrial dysfunction, oxidative stress, and axonal transport defects, which are critical for identifying potential therapeutic targets. Significant progress has been made in refining diagnostic criteria and identifying biomarkers, leading to earlier and more precise diagnoses. Although current drug treatments provide some benefits, there is a clear need for more effective therapies. Emerging treatments, such as gene therapy and stem cell therapy, show potential in modifying disease progression and improving the quality of life for ALS patients. The review emphasizes the importance of continued research to address challenges such as disease variability and the limited effectiveness of existing treatments. Future research should concentrate on further exploring the molecular foundations of ALS and developing new therapeutic approaches. The implications for clinical practice include ensuring the accessibility of new treatments and that healthcare systems are equipped to support ongoing research and patient care.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Humanos , Biomarcadores , Terapia Genética/métodos , Estrés Oxidativo , Animales , Mitocondrias/metabolismo
2.
J Neurol ; 271(10): 6923-6934, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39249108

RESUMEN

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential. METHODS: Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: "GWAS Hits PRS" and "PRS-CS," reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score ("PXS") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates. RESULTS: Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The "PXS" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range. DISCUSSION: By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Bancos de Muestras Biológicas , Herencia Multifactorial , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/diagnóstico , Humanos , Reino Unido/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Adulto , Fenotipo , Biobanco del Reino Unido
3.
Microorganisms ; 12(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39338563

RESUMEN

Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that, over millions of years, became integrated into the human genome. While normally inactive, environmental stimuli such as infections have contributed to the transcriptional reactivation of HERV-promoting pathological conditions, including the development of autoimmunity, neurodegenerative disease and cancer. What infections trigger HERV activation? Mycobacterium avium subspecies paratuberculosis (MAP) is a pluripotent driver of human disease. Aside from granulomatous diseases, Crohn's disease, sarcoidosis and Blau syndrome, MAP is associated with autoimmune disease: type one diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA) and autoimmune thyroiditis. MAP is also associated with Alzheimer's disease (AD) and Parkinson's disease (PD). Autoimmune diabetes, MS and RA are the diseases with the strongest MAP/HERV association. There are several other diseases associated with HERV activation, including diseases whose epidemiology and/or pathology would prompt speculation for a causal role of MAP. These include non-solar uveal melanoma, colon cancer, glioblastoma and amyotrophic lateral sclerosis (ALS). This article further points to MAP infection as a contributor to autoimmunity, neurodegenerative disease and cancer via the un-silencing of HERV. We examine the link between the ever-increasing number of MAP-associated diseases and the MAP/HERV intersection with these diverse medical conditions, and propose treatment opportunities based upon this association.

4.
Ageing Res Rev ; : 102519, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341507

RESUMEN

Cerebellar dysfunction is increasingly recognized as a critical factor in various neurological diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Research has revealed distinct cerebellar atrophy patterns in conditions such as AD and multiple system atrophy, and studies in mice have highlighted its impact on motor control and cognitive functions. Emerging research into autism spectrum disorder (ASD) has identified key targets, such as elevated levels of chemokine receptors and ZIC family genes. Biomarkers, including cerebrospinal fluid (CSF), genetic markers, and advances in AI and bioinformatics, are enhancing early diagnosis and personalized treatment across neurodegenerative disorders. Notable advancements include improved diagnostic tools, gene therapy, and novel clinical trials. Despite progress, challenges such as the bloodbrain barrier and neuroinflammation persist. Current therapies for AD, PD, HD, and ALS, including antisense oligonucleotides and stem cell treatments, show promise but require further investigation. A comprehensive approach that integrates diagnostic methods and innovative therapies is essential for effective management and improved patient outcomes.

5.
Metallomics ; 16(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39251386

RESUMEN

Disrupted copper availability in the central nervous system (CNS) is implicated as a significant feature of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Solute carrier family 31 member 1 (Slc31a1; Ctr1) governs copper uptake in mammalian cells and mutations affecting Slc31a1 are associated with severe neurological abnormalities. Here, we examined the impact of decreased CNS copper caused by ubiquitous heterozygosity for functional Slc31a1 on spinal cord motor neurons in Slc31a1+/- mice. Congruent with the CNS being relatively susceptible to disrupted copper availability, brain and spinal cord tissue from Slc31a1+/- mice contained significantly less copper than wild-type littermates, even though copper levels in other tissues were unaffected. Slc31a1+/- mice had less spinal cord α-motor neurons compared to wild-type littermates, but they did not develop any overt physical signs of motor impairment. By contrast, ALS model SOD1G37R mice had fewer α-motor neurons than control mice and exhibited clear signs of motor function impairment. With the expression of Slc31a1 notwithstanding, spinal cord expression of genes related to copper handling revealed only minor differences between Slc31a1+/- and wild-type mice. This contrasted with SOD1G37R mice where changes in the expression of copper handling genes were pronounced. Similarly, the expression of genes related to toxic glial activation was unchanged in spinal cords from Slc31a1+/- mice but highly upregulated in SOD1G37R mice. Together, results from the Slc31a1+/- mice and SOD1G37R mice indicate that although depleted CNS copper has a significant impact on spinal cord motor neuron numbers, the manifestation of overt ALS-like motor impairment requires additional factors.


Asunto(s)
Esclerosis Amiotrófica Lateral , Transportador de Cobre 1 , Cobre , Neuronas Motoras , Médula Espinal , Animales , Cobre/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Ratones , Transportador de Cobre 1/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Sistema Nervioso Central/metabolismo , Ratones Transgénicos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Modelos Animales de Enfermedad
6.
Mol Ther Nucleic Acids ; 35(3): 102291, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39233852

RESUMEN

A hexanucleotide (G4C2) repeat expansion (HRE) within intron one of C9ORF72 is the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). C9ORF72 haploinsufficiency, formation of RNA foci, and production of dipeptide repeat (DPR) proteins have been proposed as mechanisms of disease. Here, we report the first example of disease-modifying siRNAs for C9ORF72 driven ALS/FTD. Using a combination of reporter assay and primary cortical neurons derived from a C9-ALS/FTD mouse model, we screened a panel of more than 150 fully chemically stabilized siRNAs targeting different C9ORF72 transcriptional variants. We demonstrate the lack of correlation between siRNA efficacy in reporter assay versus native environment; repeat-containing C9ORF72 mRNA variants are found to preferentially localize to the nucleus, and thus C9ORF72 mRNA accessibility and intracellular localization have a dominant impact on functional RNAi. Using a C9-ALS/FTD mouse model, we demonstrate that divalent siRNAs targeting C9ORF72 mRNA variants specifically or non-selectively reduce the expression of C9ORF72 mRNA and significantly reduce DPR proteins. Interestingly, siRNA silencing all C9ORF72 mRNA transcripts was more effective in removing intranuclear mRNA aggregates than targeting only HRE-containing C9ORF72 mRNA transcripts. Combined, these data support RNAi-based degradation of C9ORF72 as a potential therapeutic paradigm.

7.
Soc Sci Med ; 360: 117345, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39299156

RESUMEN

Motor neurone disease (MND) is a progressive neurodegenerative disorder which is ultimately terminal. It causes muscle weakness which can lead to the need for assistance in breathing, for some with the disease. This paper draws on qualitative research using semi-structured interviews with 32 people bereaved by the death of a family member with MND who was dependent on home mechanical ventilation, from across the United Kingdom. Interviews explored how the end-of-life of a person who had used non-invasive ventilation to assist their breathing was experienced by participants, who had cared about, and for them. Four themes are used to examine the impact of dependent ventilation technology on the experience of dying on the part of bereaved family members. Themes are: accompanied dying, planned withdrawal of ventilation, blurred time of death, time post-death. The perception and experience of time was a key component across all four themes. Ventilator technology played a critical role in sustaining life, but it could also contribute to a complex dynamic where the realities of death were mediated or obscured. This raises ethical, emotional, and existential considerations, both for the individuals receiving ventilator support and their families, as well as for healthcare professionals involved in end-of-life care.

8.
J Biol Chem ; 300(9): 107640, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122006

RESUMEN

RBM45 is an RNA-binding protein with roles in neural development by regulating RNA splicing. Its dysfunction and aggregation are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). RBM45 harbors three RRM domains that potentially bind RNA. While the recognitions of RNA by its N-terminal tandem RRM domains (RRM1 and RRM2) have been well understood, the RNA-binding property of its C-terminal RRM (RRM3) remains unclear. In this work, we identified that the RRM3 of the RBM45 sequence specifically binds RNA with a GACG sequence, similar but not identical to those recognized by the RRM1 and RRM2. Further, we determined the crystal structure of RBM45RRM3 in complex with a GACG sequence-containing single-stranded DNA. Our structural results, together with the RNA-binding assays of mutants at key amino acid residues, revealed the molecular mechanism by which RBM45RRM3 recognizes an RNA sequence. Our finding on the RNA-binding property of the individual RRM module of RBM45 provides the foundation for unraveling the RNA-binding characteristics of full-length RBM45 and for understanding the biological functions of RBM45.

9.
Front Digit Health ; 6: 1440986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108340

RESUMEN

Introduction: Dysarthria, a motor speech disorder caused by muscle weakness or paralysis, severely impacts speech intelligibility and quality of life. The condition is prevalent in motor speech disorders such as Parkinson's disease (PD), atypical parkinsonism such as progressive supranuclear palsy (PSP), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an outcome that matters to patients but can also play a critical role as an endpoint in clinical research and drug development. This study validates a digital measure for speech intelligibility, the ki: SB-M intelligibility score, across various motor speech disorders and languages following the Digital Medicine Society (DiMe) V3 framework. Methods: The study used four datasets: healthy controls (HCs) and patients with PD, HD, PSP, and ALS from Czech, Colombian, and German populations. Participants' speech intelligibility was assessed using the ki: SB-M intelligibility score, which is derived from automatic speech recognition (ASR) systems. Verification with inter-ASR reliability and temporal consistency, analytical validation with correlations to gold standard clinical dysarthria scores in each disease, and clinical validation with group comparisons between HCs and patients were performed. Results: Verification showed good to excellent inter-rater reliability between ASR systems and fair to good consistency. Analytical validation revealed significant correlations between the SB-M intelligibility score and established clinical measures for speech impairments across all patient groups and languages. Clinical validation demonstrated significant differences in intelligibility scores between pathological groups and healthy controls, indicating the measure's discriminative capability. Discussion: The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant tool for assessing speech intelligibility in motor speech disorders. It holds promise for improving clinical trials through automated, objective, and scalable assessments. Future studies should explore its utility in monitoring disease progression and therapeutic efficacy as well as add data from further dysarthrias to the validation.

10.
Lancet Reg Health Eur ; 45: 101019, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39185360

RESUMEN

Background: Enhanced glutamatergic transmission leading to motor neuron death is considered the major pathophysiological mechanism of amyotrophic lateral sclerosis (ALS). Motor cortex excitability can be suppressed by transcranial static magnetic stimulation (tSMS), thus tSMS can be evaluated as a potential treatment for ALS. The aim of present study was to investigate the efficacy and safety of tSMS in ALS. Methods: In this phase 2 trial, we randomly assigned ALS patients to receive daily tSMS or placebo stimulation over a period of 6 months. For each participant we calculated mean disease monthly progression rate (MPR) as the variation of the total ALS Functional Rating Scale-Revised (ALSRFS-R) score, before the beginning of the treatment (over a period of at least three months) and over the six-month treatment period. The primary efficacy outcome was the difference in MPR before and after the beginning of treatment. Secondary outcomes included safety and tolerability, compliance, and changes in corticospinal output. A long-term follow-up of 18 months was performed in all patients who completed the six-month treatment considering a composite endpoint event (tracheostomy or death). Trial registered at ClinicalTrials.gov, ID: NCT04393467, status: closed. Findings: Forty participants were randomly assigned to real (n = 21) or placebo stimulation (n = 19). Thirty-two participants (18 real and 14 placebo) completed the 6-month treatment. The MPR did not show statistically significant differences between the two arms during the pre-treatment (mean ± Standard deviation; Real: 1.02 ± 0.62, Sham: 1.02 ± 0.57, p-value = 1.00) and treatment period (Real: 0.90 ± 0.55, Sham: 0.94 ± 0.55, p-value = 0.83). Results for secondary clinical endpoints showed that the treatment is feasible and safe, being compliance with tSMS high. The change in corticospinal output did not differ significantly between the two groups. At the end of the long-term follow-up of 18 months, patients of real group had a statistically significant higher tracheostomy-free survival compared with patients of placebo group (Hazard Ratio = 0.27 95% Confidence interval 0.09-0.80, p-value = 0.019). Interpretation: tSMS did not modify disease progression during the 6 months of treatment. However, long-term follow-up revealed a substantial increase in tracheostomy free survival in patients treated with real stimulation supporting the evaluation of tSMS in larger and more prolonged studies. Funding: The "Fondazione 'Nicola Irti' per le opere di carità e di cultura", Rome, Italy, supported present study.

11.
Health Qual Life Outcomes ; 22(1): 69, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215326

RESUMEN

BACKGROUND: Patient reported outcome measures (PROMs) can be used to assess the impact of health conditions upon an individual's health-related quality of life (HRQoL). Whilst PROMs have been used to quantify the HRQoL impact of amyotrophic lateral sclerosis (ALS), existing instruments may not fully capture what matters to people living with ALS (plwALS) or be appropriate to be used directly to inform the cost-effectiveness of new treatments. This highlights a need for a new condition-specific PROM that can both capture what's important to plwALS and be used in economic evaluation. This study has two key aims: 1) to produce a novel PROM for measuring HRQoL in plwALS (PROQuALS). 2) to value a set of items from the novel PROM to generate an associated preference-weighted measure (PWM) that will enable utility values to be generated. METHODS: A mixed-methods study design will be conducted across three stages. Stage 1 involves concept elicitation and the generation of draft PROM content from a robust and comprehensive systematic review of HRQoL in ALS, with input from plwALS. Stage 2 consists of cognitive debriefing of the draft PROM content to ascertain its content validity (Stage 2a), followed by a psychometric survey (Stage 2b) to assess statistical performance. Evidence from Stage 2 will be used to make decisions on the final content and format of the novel PROM. Stage 3 will involve valuation and econometric modeling using health economics methods to generate preference weights, so a PWM derived from the novel PROM can be used in the cost-effectiveness analyses of treatments. Patient and clinical advisory groups will have critical, collaborative input throughout the project. DISCUSSION: The novel PROM will be designed to comprehensively assess important aspects of HRQoL to plwALS and to quantify HRQoL in terms of subjective impact. The PROQuALS measure will be available for use in research and healthcare settings. The associated PWM component will extend and enable the use of PROQuALS in cost-effective analyses of new treatments for ALS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Esclerosis Amiotrófica Lateral , Medición de Resultados Informados por el Paciente , Calidad de Vida , Esclerosis Amiotrófica Lateral/psicología , Esclerosis Amiotrófica Lateral/terapia , Humanos , Calidad de Vida/psicología , Encuestas y Cuestionarios , Proyectos de Investigación , Psicometría , Análisis Costo-Beneficio
12.
Adv Neurobiol ; 39: 285-318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190080

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-ß signaling pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Comunicación Celular , Progresión de la Enfermedad , Neuronas Motoras , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Humanos , Astrocitos/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Comunicación Celular/fisiología , Animales
13.
Sci Rep ; 14(1): 19796, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187524

RESUMEN

Experimental studies identified a role of neuroinflammation in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the role of inflammatory molecules as diagnostic and prognostic biomarkers in patients with ALS is unclear. In this cross-sectional study, the cerebrospinal fluid (CSF) levels of a set of inflammatory cytokines and chemokines were analyzed in 56 newly diagnosed ALS patients and in 47 age- and sex-matched control patients without inflammatory or degenerative neurological disorders. The molecules analyzed included: interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, granulocyte colony stimulating factor (GCSF), macrophage inflammatory protein (MIP)-1a, MIP-1b, tumor necrosis factors (TNF), eotaxin. Principal component analysis (PCA) was used to explore possible associations between CSF molecules and ALS diagnosis. In addition, we analyzed the association between CSF cytokine profiles and clinical characteristics, including the disease progression rate score, and peripheral inflammation assessed using the Neutrophil-to-lymphocyte ratio (NLR). PCA identified six principal components (PCs) explaining 70.67% of the total variance in the CSF cytokine set. The principal component (PC1) explained 26.8% of variance and showed a positive load with CSF levels of IL-9, IL-4, GCSF, IL-7, IL-17, IL-13, IL-6, IL-1ß, TNF, and IL-2. Logistic regression showed a significant association between PC1 and ALS diagnosis. In addition, in ALS patients, the same component was significantly associated with higher disease progression rate score and positively correlated with NLR. CSF inflammatory activation in present in ALS at the time of diagnosis and may characterize patients at higher risk for disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Citocinas , Progresión de la Enfermedad , Humanos , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Citocinas/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Anciano , Inflamación/líquido cefalorraquídeo , Análisis de Componente Principal , Adulto , Pronóstico , Estudios de Casos y Controles
14.
Quant Imaging Med Surg ; 14(8): 5774-5788, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144033

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS)-related white-matter microstructural abnormalities have received considerable attention; however, gray-matter structural abnormalities have not been fully elucidated. This study aimed to evaluate cortical microstructural abnormalities in ALS and determine their association with disease severity. Methods: This study included 34 patients with ALS and 30 healthy controls. Diffusion-weighted data were used to estimate neurite orientation dispersion and density imaging (NODDI) parameters, including neurite density index (NDI) and orientation dispersion index (ODI). We performed gray matter-based spatial statistics (GBSS) in a voxel-wise manner to determine the cortical microstructure difference. We used the revised ALS Functional Rating Scale (ALSFRS-R) to assess disease severity and conducted a correlation analysis between NODDI parameters and ALSFRS-R. Results: In patients with ALS, the NDI reduction involved several cortical regions [primarily the precentral gyrus, postcentral gyrus, temporal cortex, prefrontal cortex, occipital cortex, and posterior parietal cortex; family-wise error (FWE)-corrected P<0.05]. ODI decreased in relatively few cortical regions (including the precentral gyrus, postcentral gyrus, prefrontal cortex, and inferior parietal lobule; FWE-corrected P<0.05). The NDI value in the left precentral and postcentral gyrus was positively correlated with the ALS disease severity (FWE-corrected P<0.05). Conclusions: The decreases in NDI and ODI involved both motor-related and extra-motor regions and indicated the presence of gray-matter microstructural impairment in ALS. NODDI parameters are potential imaging biomarkers for evaluating disease severity in vivo. Our results showed that GBSS is a feasible method for identifying abnormalities in the cortical microstructure of patients with ALS.

15.
Neurobiol Dis ; 200: 106614, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067491

RESUMEN

Perineuronal nets (PNNs) are extracellular matrix structures that surround excitable neurons and their proximal dendrites. PNNs play an important role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can act as a trigger for neuronal death, and this has been implicated in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). We therefore characterised PNNs around alpha motor neurons and the possible contributing cellular factors in the mutant TDP-43Q331K transgenic mouse, a slow onset ALS mouse model. PNNs around alpha motor neurons showed significant loss at mid-stage disease in TDP-43Q331K mice compared to wild type strain control mice. PNN loss coincided with an increased expression of matrix metallopeptidase-9 (MMP-9), an endopeptidase known to cleave PNNs, within the ventral horn. During mid-stage disease, increased numbers of microglia and astrocytes expressing MMP-9 were present in the ventral horn of TDP-43Q331K mice. In addition, TDP-43Q331K mice showed increased levels of aggrecan, a PNN component, in the ventral horn by microglia and astrocytes during this period. Elevated aggrecan levels within glia were accompanied by an increase in fractalkine expression, a chemotaxic protein responsible for the recruitment of microglia, in alpha motor neurons of onset and mid-stage TDP-43Q331K mice. Following PNN loss, alpha motor neurons in mid-stage TDP-43Q331K mice showed increased 3-nitrotyrosine expression, an indicator of protein oxidation. Together, our observations along with previous PNN research provide suggests a possible model whereby microglia and astrocytes expressing MMP-9 degrade PNNs surrounding alpha motor neurons in the TDP-43Q331K mouse. This loss of nets may expose alpha-motor neurons to oxidative damage leading to degeneration of the alpha motor neurons in the TDP-43Q331K ALS mouse model.


Asunto(s)
Agrecanos , Esclerosis Amiotrófica Lateral , Metaloproteinasa 9 de la Matriz , Microglía , Neuronas Motoras , Fagocitosis , Animales , Ratones , Agrecanos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Modelos Animales de Enfermedad , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Transgénicos , Microglía/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fagocitosis/fisiología , Médula Espinal/metabolismo , Médula Espinal/patología
16.
ACS Chem Neurosci ; 15(16): 3009-3021, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39084211

RESUMEN

The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aß42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.


Asunto(s)
Inflamasomas , Organoides , Corteza Prefrontal , Humanos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Organoides/efectos de los fármacos , Inflamasomas/metabolismo , Fármacos Neuroprotectores/farmacología , Vuelo Espacial , Ingravidez , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo
17.
EBioMedicine ; 106: 105235, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996764

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. The limited efficacy of recent therapies in clinical development may be linked to lack of drug penetration to the affected motor neurons due to the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). METHODS: In this work, the safety and efficacy of repeated short transient opening of the BSCB by low intensity pulsed ultrasound (US, sonication) was studied in females of an ALS mouse model (B6.Cg-Tg(SOD1∗G93A)1Gur/J). The BSCB was disrupted using a 1 MHz ultrasound transducer coupled to the spinal cord, with and without injection of insulin-like growth factor 1 (IGF1), a neurotrophic factor that has previously shown efficacy in ALS models. FINDINGS: Results in wild-type (WT) animals demonstrated that the BSCB can be safely disrupted and IGF1 concentrations significantly enhanced after a single session of transient BSCB disruption (176 ± 32 µg/g vs. 0.16 ± 0.008 µg/g, p < 0.0001). Five repeated weekly US sessions performed in female ALS mice demonstrated a survival advantage in mice treated with IGF1 and US (US IGF1) compared to treatment with IGF1 alone (176 vs. 166 days, p = 0.0038). Surprisingly, this survival advantage was also present in mice treated with US alone vs. untreated mice (178.5 vs. 166.5 days, p = 0.0061). Muscle strength did not show difference among the groups. Analysis of glial cell immunoreactivity and microglial transcriptome showing reduced cell proliferation pathways, in addition to lymphocyte infiltration, suggested that the beneficial effect of US or US IGF1 could act through immune cell modulation. INTERPRETATION: These results show the first step towards a possible beneficial impact of transient BSCB opening for ALS therapy and suggest implication of immune cells. FUNDING: Fondation pour la Recherche Médicale (FRM). Investissements d'avenirANR-10-IAIHU-06, Société Française de Neurochirurgie (SFNC), Fond d'étude et de Recherche du Corps Medical (FERCM), Aide à la Recherche des Maladies du Cerveau (ARMC), SLA Fondation Recherche (SLAFR), French Ministry for High Education and Research (MENR), Carthera, Laboratoire de Recherche en Technologies Chirurgicales Avancées (LRTCA).


Asunto(s)
Esclerosis Amiotrófica Lateral , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Factor I del Crecimiento Similar a la Insulina , Médula Espinal , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Femenino , Ratones , Médula Espinal/metabolismo , Barrera Hematoencefálica/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Transgénicos , Humanos , Neuronas Motoras/metabolismo , Ondas Ultrasónicas
18.
Muscle Nerve ; 70(3): 333-345, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39031772

RESUMEN

INTRODUCTION/AIMS: In amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (SOD1-ALS), tofersen received accelerated approval in the United States and is available via expanded access programs (EAP) outside the United States. This multicenter study investigates clinical and patient-reported outcomes (PRO) and serum neurofilament light chain (sNfL) during tofersen treatment in an EAP in Germany. METHODS: Sixteen SOD1-ALS patients receiving tofersen for at least 6 months were analyzed. The ALS progression rate (ALS-PR), as measured by the monthly change of the ALS functional rating scale-revised (ALSFRS-R), slow vital capacity (SVC), and sNfL were investigated. PRO included the Measure Yourself Medical Outcome Profile (MYMOP2), Treatment Satisfaction Questionnaire for Medication (TSQM-9), and Net Promoter Score (NPS). RESULTS: Mean tofersen treatment was 11 months (6-18 months). ALS-PR showed a mean change of -0.2 (range 0 to -1.1) and relative reduction by 25%. Seven patients demonstrated increased ALSFRS-R. SVC was stable (mean 88%, range -15% to +28%). sNfL decreased in all patients except one heterozygous D91A-SOD1 mutation carrier (mean change of sNfL -58%, range -91 to +27%, p < .01). MYMOP2 indicated improved symptom severity (n = 10) or yet perception of partial response (n = 6). TSQM-9 showed high global treatment satisfaction (mean 83, SD 16) although the convenience of drug administration was modest (mean 50, SD 27). NPS revealed a very high recommendation rate for tofersen (NPS +80). DISCUSSION: Data from this EAP supported the clinical and sNfL response to tofersen in SOD1-ALS. PRO suggested a favorable patient perception of tofersen treatment in clinical practice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Neurofilamentos , Medición de Resultados Informados por el Paciente , Superóxido Dismutasa-1 , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Superóxido Dismutasa-1/genética , Proteínas de Neurofilamentos/sangre , Resultado del Tratamiento , Progresión de la Enfermedad , Adulto , Oligonucleótidos/uso terapéutico
19.
Front Neurosci ; 18: 1424025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966756

RESUMEN

In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.

20.
Biomolecules ; 14(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062592

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex neuromuscular disease characterized by progressive motor neuron degeneration, neuromuscular junction dismantling, and muscle wasting. The pathological and therapeutic studies of ALS have long been neurocentric. However, recent insights have highlighted the significance of peripheral tissue, particularly skeletal muscle, in disease pathology and treatment. This is evidenced by restricted ALS-like muscle atrophy, which can retrogradely induce neuromuscular junction and motor neuron degeneration. Moreover, therapeutics targeting skeletal muscles can effectively decelerate disease progression by modulating muscle satellite cells for muscle repair, suppressing inflammation, and promoting the recovery or regeneration of the neuromuscular junction. This review summarizes and discusses therapeutic strategies targeting skeletal muscles for ALS treatment. It aims to provide a comprehensive reference for the development of novel therapeutics targeting skeletal muscles, potentially ameliorating the progression of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Músculo Esquelético , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/terapia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Animales , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA