Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pestic Biochem Physiol ; 191: 105371, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963940

RESUMEN

Carduus acanthoides L. is mainly a range-land weed, but in the 2010s has begun to invade GM crop production systems in Córdoba (Argentina), where glyphosate and 2,4-D have been commonly applied. In 2020, C. acanthoides was found with multiple resistance to these two herbicides. In this study, the mechanisms that confer multiple resistance to glyphosate and 2,4-D, were characterized in one resistant (R) population of C. acanthoides in comparison to a susceptible (S) population. No differences in 14C-herbicide absorption and translocation were observed between R and S populations. In addition, 14C-glyphosate was well translocated to the shoots (∼30%) and roots (∼16%) in both R and S plants, while most of 14C-2,4-D remained restricted in the treated leaf. Glyphosate metabolism did not contribute to resistance of the R population; however, as corroborated by malathion pretreatment, the mechanism of resistance to 2,4-D was enhanced metabolism (63% of the herbicide) mediated by cytochrome P450 (Cyt-P450). No differences were found in baseline EPSPS activity, copy number, and/or gene expression between the R and S populations, but a Pro-106-Ser mutation in EPSPS was present in the R population. Multiple resistances in the R population of C. acanthoides from Argentina were governed by target site resistance (a Pro-106 mutation for glyphosate) and non-target site resistance (Cyt-P450-based metabolic resistance for 2,4-D) mechanisms. This is the first case of resistance to glyphosate and 2,4-D confirmed for this weed in the world.


Asunto(s)
Carduus , Herbicidas , Carduus/metabolismo , Resistencia a los Herbicidas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Herbicidas/farmacología , Ácido 2,4-Diclorofenoxiacético/farmacología , Glifosato
2.
Plants (Basel) ; 11(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297822

RESUMEN

2,4-D and dicamba are used in the postemergence management of eudicotyledonous weeds in different crops, most of which are grown under no-tillage systems. Due to the application methods for these products, their dynamics in straw and their residual action in soil have rarely been explored. Thus, the objective of this study was to evaluate the dynamics of 2,4-D and dicamba that have been applied to corn straw and to verify their relationship with residual control action in weeds. In the dynamics experiments, the herbicides were applied to 5 t ha-1 of straw, and rainfall simulations were performed with variable amounts and at different periods after application to evaluate herbicide movement in the straw. In the residual action experiments, the species Digitaria insularis, Conyza spp., Bidens pilosa, Amaranthus hybridus, Euphorbia heterophylla, and Eleusine indica were sown in trays, and 2,4-D and dicamba were applied directly to the soil, to the soil with the subsequent addition of the straw, and to the straw; all of these applications were followed by a simulation of 10 mm of rain. The physical effect of the straw and the efficacy of the herbicides in terms of pre-emergence control of the weed species were evaluated. The leaching of 2,4-D and dicamba from the corn straw increased with a higher volume of rainfall, and the longer the drought period was, the lower the final amount of herbicide that leached. The presence of the corn straw on the soil exerted a physical control effect on Conyza spp.; significantly reduced the infestation of D. insularis, B. pilosa, A. hybridus, and E. indica; and broadened the control spectrum of 2,4-D and dicamba, assisting in its residual action and ensuring high levels of control of the evaluated weeds. In the absence of the straw, 2,4-D effectively controlled the pre-emergence of D. insularis, Conyza spp., and A. hybridus, and dicamba effectively controlled D. insularis, Conyza spp., B. pilosa, A. hybridus, E. heterophylla, and E. indica.

3.
Biomolecules ; 11(8)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34439819

RESUMEN

With the introduction of the new auxinic herbicide halauxifen-methyl into the oilseed rape (Brassica napus) market, there is a need to understand how this new molecule interacts with indigenous plant hormones (e.g., IAA) in terms of crop response. The aim of this study was to investigate the molecular background by using different growth conditions under which three different auxinic herbicides were administered. These were halauxifen-methyl (Hal), alone and together with aminopyralid (AP) as well as picloram (Pic). Three different hormone classes were determined, free and conjugated indole-3-acetic acid (IAA), aminocyclopropane carboxylic acid (ACC) as a precursor for ethylene, and abscisic acid (ABA) at two different temperatures and growth stages as well as over time (2-168 h after treatment). At 15 °C growth temperature, the effect was more pronounced than at 9 °C, and generally, the younger leaves independent of the developmental stage showed a larger effect on the alterations of hormones. IAA and ACC showed reproducible alterations after auxinic herbicide treatments over time, while ABA did not. Finally, a transcriptome analysis after treatment with two auxinic herbicides, Hal and Pic, showed different expression patterns. Hal treatment leads to the upregulation of auxin and hormone responses at 48 h and 96 h. Pic treatment induced the hormone/auxin response already after 2 h, and this continued for the other time points. The more detailed analysis of the auxin response in the datasets indicate a role for GH3 genes and genes encoding auxin efflux proteins. The upregulation of the GH3 genes correlates with the increase in conjugated IAA at the same time points and treatments. Also, genes for were found that confirm the upregulation of the ethylene pathway.


Asunto(s)
Ácido Abscísico/farmacología , Aminoácidos Cíclicos/farmacología , Brassica napus/efectos de los fármacos , Herbicidas/farmacología , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Carboxílicos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Picloram/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piridinas/farmacología , Temperatura , Transcriptoma
4.
J Environ Sci Health B ; 56(7): 634-643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34082656

RESUMEN

The present study aimed to evaluate the Strata-X® sorbent, commonly used in cartridges, through analysis by high-performance liquid chromatography coupled with mass spectrometry. Due to the different physical-chemical characteristics of the compounds, different conditions of chromatography and mass analysis were necessary. The developed methods were validated in terms of selectivity, linear range, linearity (coefficient of determination, r2), the limit of detection (LOD), the limit of quantification (LOQ), accuracy (recovery, %), and precision (RSD, %). The results allowed us to select efficient extraction methods, using methanol acidified to pH 2 with formic acid, to elute the herbicides 2,4-D and dicamba in both sorbent materials. Besides, the Strata-X® sorbent was efficient in the sorption of analytes; thus, we indicate it for potential use in air sampling as an alternative to XAD-2.


Asunto(s)
Dicamba , Herbicidas , Ácido 2,4-Diclorofenoxiacético , Cromatografía Líquida de Alta Presión , Dicamba/análisis , Herbicidas/análisis , Límite de Detección
5.
Anal Bioanal Chem ; 409(19): 4581-4592, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28585086

RESUMEN

Due to the acidity and strong polarity of auxinic herbicides, separation of these compounds in food and environmental samples is a great challenge. In this study, 12 geminal dicationic ionic liquids (GDILs) were synthesized and used as mobile phase additives to separate six auxinic herbicides. The effects of the kind of dication, the length of linkage chain, the kind of anion, the concentration of GDILs, and the pH of mobile phase for the separation were investigated in detail. Compared with [C4MIm][BF4], GDILs ([C8(MIm)2][BF4]2) showed higher resolution, better peak shape, and lower retention factor. The separation performance of additives was in the order of [C8(MIm)2][BF4]2 > [C8(MPy)2][BF4]2, [(C4)2MPiz][BF4]2, [C8(MMo)2][BF4]2, [C4MIm][BF4], [C8(MPid)2][BF4]2 > [C8(HBOc)2][BF4]2 > TBAB. GDILs showed the best separation under the following conditions: cation: imidazolium; length of linkage chain: 8; anion: BF4-; mobile phase pH: 3; concentration: 5 mmol L-1. The separation mechanism of GDILs may mainly be due to their symmetric structure and the abundance of positive charge sites which could help GDILs shield the residual silanol and interact with analytes more efficiently to improve the peak shapes, resolution, and retention. In addition, the GDILs in the mobile phase and anions adsorbed on the stationary phase also greatly affected the separation. GDILs used as mobile phase additives to separate auxinic herbicides showed high efficiency separation and low damage to HPLC columns, and the developed chromatographic method had excellent linearity, accuracy, precision, and repeatability. The application and mechanism study of GDILs in HPLC would be instructive to determine and separate acid herbicides in food and environmental samples. Graphical abstract As HPLC mobile phase additives, GDILs show high separation performance due to their unique symmetric structures.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Líquidos Iónicos/análisis , Cationes
6.
In Vitro Cell Dev Biol Plant ; 49: 461-467, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990700

RESUMEN

Auxinic herbicides are widely used in agriculture to selectively control broadleaf weeds. Prolonged use of auxinic herbicides has resulted in the evolution of resistance to these herbicides in some biotypes of Brassica kaber (wild mustard), a common weed in agricultural crops. In this study, auxinic herbicide resistance from B. kaber was transferred to Brassica juncea and Brassica rapa, two commercially important Brassica crops, by traditional breeding coupled with in vitro embryo rescue. A high frequency of embryo regeneration and hybrid plant establishment was achieved. Transfer of auxinic herbicide resistance from B. kaber to the hybrids was assessed by whole-plant screening of hybrids with dicamba, a widely used auxinic herbicide. Furthermore, the hybrids were tested for fertility (both pollen and pistil) and their ability to produce backcross progeny. The auxinic herbicide-resistant trait was introgressed into B. juncea by backcross breeding. DNA ploidy of the hybrids as well as of the backcross progeny was estimated by flow cytometry. Creation of auxinic herbicide-resistant Brassica crops by non-transgenic approaches should facilitate effective weed control, encourage less tillage, provide herbicide rotation options, minimize occurrence of herbicide resistance, and increase acceptance of these crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA