Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.767
Filtrar
Más filtros

Intervalo de año de publicación
1.
Animals (Basel) ; 14(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123702

RESUMEN

Erythropoietin (EPO), a hormone secreted mainly by the kidney, exerts its biological function by binding to its cell-surface receptor (EpoR). The presence of EPO and EpoR in the male and female reproductive system has been verified. Therefore, some of the key properties of EPO, such as its antioxidant and antiapoptotic effects, could improve the fertilizing capacity of spermatozoa. In the present study, the effect of two different concentrations of EPO (10 mIU/µL and 100 mIU/µL) on bovine sperm-quality parameters was evaluated during a post-thawing 4-h incubation at 37 °C. EPO had a positive effect on sperm motility, viability, and total antioxidant capacity. Moreover, EPO inhibited apoptosis, as it reduced both BCL2-associated X apoptosis regulator (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and cleaved cysteine-aspartic proteases (caspases) substrate levels in a dose-dependent manner. In addition, EPO induced sperm capacitation and acrosome reaction in spermatozoa incubated in capacitation conditioned medeia. These results establish a foundation for the physiological role of EPO in reproductive processes and hopefully will provide an incentive for further research in order to fully decipher the role of EPO in sperm physiology and reproduction.

2.
J Mol Histol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122895

RESUMEN

Corosolic acid (CA) is a well-known natural pentacyclic triterpene found in numerous therapeutic plants that can exhibit many bioactivities including anti-inflammatory and anti-tumor actions. The current investigation explores the chemoprotective roles of CA against azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty Sprague Dawley rats were grouped in 5 cages; Group A, normal control rats inoculated subcutaneously (sc) with two doses of normal saline and fed orally on 10% tween 20; Groups B-E received two doses (sc) of azoxymethane in two weeks and treated with either 10% tween 20 (group B) or two intraperitoneal injections of 35 mg/kg 5-fluorouracil each week for one month (group C), while group D and E treated with 30 and 60 mg/kg, respectively, for 2 months. The toxicity results showed lack of any behavioral abnormalities or mortality in rats ingested with up-to 500 mg/kg of CA. The present AOM induction caused a significant initiation of ACF characterized by an increased number, larger in size, and well-matured tissue clusters in cancer controls. AOM inoculation created a bizarrely elongated nucleus, and strained cells, and significantly lowered the submucosal glands in colon tissues of cancer controls compared to 5-FU or CA-treated rats. CA treatment led to significant suppression of ACF incidence, which could be mediated by its modulatory effects on the immunohistochemical proteins (pro-apoptotic (Bax) and reduced PCNA protein expressions in colon tissues). Moreover, CA-treated rats had improved oxidative stress-mediated cytotoxicity indicated by increased endogenous antioxidants (SOD and CAT) and reduced lipid peroxidation indicators (MDA). In addition, CA ingestion (30 and 60 mg/kg) suppressed the inflammatory cascades, indicated by decreased serum TNF-α and IL-6 cytokines and increased anti-inflammatory (IL-10) cytokines consequently preventing further tumor development. CA treatment maintained liver and kidney functions in rats exposed to AOM cytotoxicity. CA could be a viable alternative for the treatment of oxidative-related human disorders including ACF.

3.
J Microencapsul ; : 1-16, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092777

RESUMEN

AIM: This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of Santolina chamaecyparissus L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines. METHODS: A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in in vitro tests for apoptosis detection. RESULTS: Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed. CONCLUSION: The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.

4.
Aging (Albany NY) ; 162024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39103204

RESUMEN

Angelica sinensis (AS) can improve the haematopoietic function, but the treatment mechanism is unknown. Transfusion dependency was estimated by Kaplan-Meier survival analyses and Cox proportional-hazard model in AS treated apalstic anemia (AA) patients. After that, the AA GEO database was analysed, the up differentially expressed genes (DEGs) of AA were combined with AS targets for the intersection of targets. After the AA mouse model was established, the effect of AS was confirmed by haematopoietic function tests. The same experiment plus mitochondrial apoptotic pathway tests in vivo were performed in Angelica sinensis polysaccharide (ASP)-treated mice, the key ingredient in AS. For in vitro experiment, bone marrow nucleated cells (BMNCs) were tested. Clinical data confirmed that the level of transfusion dependency and IL17A were lower in AS-users compared to non-AS users (p < 0.001). The intersection of targets between AA and AS most concentrated on inflammation and apoptosis. Then, the same effect was found in AS treated AA mice model. In both in vivo and in vitro tests, ASP demonstrated the ability to mitigate P38/MAPK-induced Bax-associated mitochondrial apoptosis, while also reducing the levels of activated Th17 cells and alleviating abnormal cytokine levels. So, the protective effect of AS and ASP on hematopoietic function lies in their ability to prevent apoptosis.

5.
Am J Transl Res ; 16(7): 2777-2792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114703

RESUMEN

Introduction: The kinetics of brain cell death in Alzheimer's disease (AD) is being studied using mathematical models. These mathematical models utilize techniques like differential equations, stochastic processes, and network theory to explore crucial signalling pathways and interactions between different cell types. One crucial area of research is the intentional cell death known as apoptosis, which is crucial for the nervous system. The main purpose behind the mathematical modelling of this is for identification of which biomarkers and pathways are most influential in the progression of AD. In addition, we can also predict the natural history of the disease, by which we can make early diagnosis. Mathematical modelling of AD: Current mathematical models include the Apolipoprotein E (APOE) Gene Model, the Tau Protein Kinetics Model, and the Amyloid Beta Peptide Kinetic Model. The Bcl-2 and Bax apoptosis theories postulate that the balance of pro- and anti-apoptotic proteins in cells determines whether a cell experiences apoptosis, where the Bcl-2 model, depicts the interaction of pro- and anti-apoptotic proteins, it is also being used in research on cell death in a range of cell types, including neurons and glial cells. How peptides are produced and eliminated in the brain is explained by the Amyloid beta Peptide (Aß) Kinetics Model. The tau protein kinetics model focuses on production, aggregation, and clearance of tau protein processes, which are hypothesized to be involved in AD. The APOE gene model investigates the connection between the risk of Alzheimer's disease and the APOE gene. These models have been used to predict how Alzheimer's disease would develop and to evaluate how different inhibitors will affect the illness's course. Conclusion: These mathematical models reflect physiological meaningful characteristics and demonstrates robust fits to training data. Incorporating biomarkers like Aß, Tau, APOE and markers of neuronal loss and cognitive impairment can generate sound predictions of biomarker trajectories over time in Alzheimer's disease.

7.
Heliyon ; 10(12): e32592, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952360

RESUMEN

Background: Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective: We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods: Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results: At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion: Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.

8.
Biology (Basel) ; 13(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39056682

RESUMEN

Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.

9.
Biomedicines ; 12(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39062012

RESUMEN

Corneal endothelial cells (CE) are critical for the cornea's transparency. For severe corneal damage, corneal tissue transplantation is the most promising option for restoring vision. However, CE apoptotic cell death occurs during the storage of donor corneas for transplantation. This study used small interfering (si)RNA-mediated silencing of pro-apoptotic proteins as a novel strategy to protect CE against apoptosis. Therefore, the pro-apoptotic proteins Bax and Bak were silenced in the human corneal endothelial cell line (HCEC-12) by transfection with Accell™siRNA without any adverse effects on cell viability. When apoptosis was induced, e.g., etoposide, the caspase-3 activity and Annexin V-FITC/PI assay indicated a significantly reduced apoptosis rate in Bax+Bak-siRNA transfected HCECs compared to control (w/o siRNA). TUNEL assay in HCECs exposed also significantly lower cell death in Bax+Bak-siRNA (7.5%) compared to control (w/o siRNA: 32.8%). In ex vivo donor corneas, a significant reduction of TUNEL-positive CEs in Bax+Bak-siRNA corneas (8.1%) was detectable compared to control-treated corneas (w/o siRNA: 27.9%). In this study, we demonstrated that suppressing pro-apoptotic siRNA leads to inhibiting CE apoptosis. Gene therapy with siRNA may open a new translational approach for corneal tissue treatment in the eye bank before transplantation, leading to graft protection and prolonged graft survival.

10.
Tissue Cell ; 89: 102459, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002290

RESUMEN

Testicular torsion is an urological emergency and can lead to ischemia damage and testicular loss if not diagnosed in time. Proanthocyanidin is reported to have anti-inflammatory and antioxidant properties. The current study aimed to examine the possible effects of proanthocyanidin (P) on the testis in torsion/detorsion (T/D)-induced testicular ischemia/reperfusion (I/R) injury in rats. Forty rats were divided into four groups (n=10 for each): sham-operated (sham), I/R, I/R + P100 (100 mg/kg, 30 min before torsion), and I/R + P200 (200 mg/kg, 30 min before torsion). Testicular T/D was performed on the left testicle by 3 hours of torsion at 720° clockwise, followed by 3 hours of detorsion. In the I/R group, an increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH), vitamin C (Vit C), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD) values were determined compared to the sham group (p<0.001). Moreover, an increase in the expression of cleaved caspase-3 and Bcl2-associated X protein (Bax), a decrease in the expression of B-cell lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were detected in the I/R group (p<0.001). Histopathologically, it was determined that the Johnsen and Cosentino scores of the testicles were irregular in the I/R group (p<0.001). Proanthocyanidin treatment caused a decrease in MDA, cleaved caspase-3 and Bax levels and an increase in GSH, Vit C, GPx, G6PD, Bcl-2 and PCNA values. Additionally, Johnsen and Cosentino rearranged the scores. The present findings revealed the protective and curative effects of proanthocyanidin in organ damage due to testicular torsion/detorsion-induced ischemia/reperfusion with their antioxidative and antiapoptotic properties.


Asunto(s)
Proantocianidinas , Daño por Reperfusión , Torsión del Cordón Espermático , Testículo , Animales , Masculino , Proantocianidinas/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Torsión del Cordón Espermático/metabolismo , Torsión del Cordón Espermático/complicaciones , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/patología , Ratas , Testículo/metabolismo , Testículo/efectos de los fármacos , Testículo/patología , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Glutatión/metabolismo , Malondialdehído/metabolismo , Glutatión Peroxidasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Ratas Wistar
11.
Biochem J ; 481(14): 903-922, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38985308

RESUMEN

Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.


Asunto(s)
Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/química , Humanos , Apoptosis/fisiología , Animales , Membranas Mitocondriales/metabolismo , Unión Proteica
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1109-1116, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38977340

RESUMEN

OBJECTIVE: To investigate the effect of solasonine, an active component of Solanum nigrum, on proliferation and apoptosis of non-small cell lung cancer PC9 cells. METHODS: PC9 cells were treated with 2, 5, 10, 15, 20, or 25 µmol/L solasonine, and the changes in cell proliferation were examined using CCK-8 assay. Tetramethyl rhodamine ethyl ester (TMRE) was used to detect the changes in mitochondrial membrane potential, and caspase-3/7 detection kit and GreenNucTM caspase-3/Annexin V-mCherry kit for live cell were used to analyze the changes in caspase-3 of the cells. Annexin V-FITC/PI double staining was employed to analyze the apoptosis rate of the cells. The effect of PTEN inhibitors on solasonine-induced cell apoptosis was examined by detecting apoptosis-related protein expressions using Western blotting. RESULTS: Solasonine treatment for 24, 48, and 72 h significantly lowered the viability of PC9 cells. The cells treated with solasonine for 24 h showed significantly decreased mitochondrial membrane potential and increased cell apoptosis with enhanced caspase-3/7 and caspase-3 activities and expression of cleaved caspase-3. Solasonine treatment significantly decreased phosphorylation levels of PI3K and Akt, increased the protein expressions of PTEN and Bax, and lowered the expression of Bcl-2 protein in the cells. CONCLUSION: Solasonine inhibits proliferation and induces apoptosis of PC9 cells by regulating the Bcl-2/Bax/caspase-3 pathway and its upstream proteins.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Caspasa 3 , Proliferación Celular , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína X Asociada a bcl-2 , Humanos , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proliferación Celular/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Alcaloides Solanáceos/farmacología , Transducción de Señal/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo
13.
Open Life Sci ; 19(1): 20220919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071496

RESUMEN

The mortality rate of acute-on-chronic liver failure (ACLF) remains significantly elevated; hence, this study aimed to investigate the impact of heat shock protein family B (small) member 1 (HSPB1) on ACLF in vivo and in vitro and the underlying mechanism. This study used the ACLF mouse model, and liver damage extent was studied employing Masson trichrome, hematoxylin and eosin (H&E), Sirius red staining, and serum biochemical indices. Similarly, hepatocyte injury in lipopolysaccharide (LPS)-induced L02 cells was evaluated using cell counting kit-8 assay, enzymatic activity, flow cytometry, and TUNEL assay, while the underlying mechanism was investigated using western blot. Results showed that the morphology of liver tissue in ACLF mice was changed and was characterized by cirrhosis, fibrosis, collagen fiber deposition, inflammatory cell infiltration, and elevated liver injury indices. Moreover, HSPB1 was upregulated in both ACLF patients and mice, where overexpressing HSPB1 was found to inhibit ACLF-induced liver damage. Similarly, the HSPB1 expression in LPS-treated L02 cell lines was also increased, where overexpressing HSPB1 was found to promote cell viability, inhibit liver injury-related enzyme activity, and suppress apoptosis. Mechanistic investigations revealed that HSPB1 was responsible for inhibiting p-P53 and Bax protein levels, where activated P53 counteracted HSPB1's effects on cellular behaviors. In conclusion, HSPB1 attenuated ACLF-induced liver injury in vivo and inhibited LPS-induced hepatocyte damage in vitro, suggesting that HSPB1 may be a novel target for ACLF therapy.

14.
Mol Ther Methods Clin Dev ; 32(3): 101280, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39015407

RESUMEN

Adeno-associated virus (AAV) vectors have become the leading platform for gene delivery in both preclinical research and therapeutic applications, making the production of high-titer AAV preparations essential. To date, most AAV-based studies use constitutive promoters (e.g., CMV, CAG), which are also active in human embryonic kidney (HEK)-293 producer cells, thus leading to the expression of the transgene already during production. Depending on the transgene's function, this might negatively impact producer cell performance and result in decreased AAV vector yields. Here, we evaluated a panel of diverse microRNA (miRNA)-based shRNA designs to identify a highly potent artificial miRNA for the transient suppression of transgenes during AAV production. Our results demonstrate that insertion of miRNA target sites into the 3' UTR of the transgene and simultaneous expression of the corresponding miRNA from the 3' UTR of conventional AAV production plasmids (rep/cap, pHelper) enabled efficient silencing of toxic transgene expression, thereby increasing AAV vector yields up to 240-fold. This strategy not only allows to maintain the traditional triple-transfection protocol, but also represents a universally applicable approach to suppress toxic transgenes, thereby boosting vector yields with so far unprecedented efficiency.

15.
J Biomed Phys Eng ; 14(3): 275-286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39027712

RESUMEN

Background: Industrial radiography uses gamma or X-ray radionuclide sources to investigate the safety of industrial materials. Industrial radiation workers receive the highest occupational radiation doses. Objective: The present study investigates the relationship between Bax and Bcl-2 gene expression variables in industrial radiation workers. Material and Methods: In this case-control study, data was collected using blood sampling from 40 workers, including two groups of non-radiation and radiation workers employed at the location. Expression levels of Bax and Bcl-2 genes were assessed in the laboratory. The environmental and absorbed doses of workers were measured using environmental and pen dosimeters. Results: Statistical analysis showed that the radiation group's Bcl-2 gene expression level was significantly higher. Findings also demonstrated a correlation between Bcl-2 gene expression and the number of workdays. Also, the Bax gene expression did not show a significant change, and the expression ratio of Bax/Bcl-2 was insignificant in the two groups. Conclusion: Exposure to low doses of radiation could promote an adaptive response in cells by increasing Bcl-2 gene expression.

16.
Aging (Albany NY) ; 16(14): 11289-11317, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39074253

RESUMEN

BACKGROUND: Apoptosis Regulator BCL2 Associated X (BAX) is a pro-apoptotic gene. Apoptosis is one of the important components of immune response and immune regulation. However, there is no systematic pan-cancer analysis of BAX. METHODS: Original data of this study were downloaded from TCGA databases and GTEX databases. We conducted the gene expression analysis and survival analysis of BAX in 33 types of cancer via Gene Expression Profiling Interactive Analysis (GEPIA) database. Real-time PCR and immunohistochemistry (IHC) were further performed to examine the BAX expression in cancer cells and tissues. Moreover, the relationship between BAX and immune infiltration and gene alteration was studied by the Tumor Immune Estimation Resource (TIMER) and cBioPortal tools. Protein-protein interaction analysis was performed in the STRING database. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to evaluate the enrichment analysis. RESULTS: BAX was highly expressed in most cancers and was associated with poor prognosis in nine cancer types. In addition, BAX showed significant clinical relevance, and the mRNA expression of BAX was also strongly associated with drug sensitivity of many drugs. Furthermore, BAX may participate in proliferation and metastasis of many cancers and was associated with methylation. Importantly, BAX expression was positively correlated with most immune infiltrating cells. CONCLUSION: Our findings suggested that BAX can function as an oncogene and may be used as a potential predictive biomarker for prognosis and immunotherapy efficacy of human cancer, which could provide a new approach for cancer therapy.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Inmunoterapia , Neoplasias , Proteína X Asociada a bcl-2 , Humanos , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Inmunoterapia/métodos , Apoptosis/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Mapas de Interacción de Proteínas
17.
Cells ; 13(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891043

RESUMEN

BAX plays an essential role in retinal ganglion cell (RGC) death induced by optic nerve injury. Recently, we developed M109S, an orally bioactive and cytoprotective small compound (CPSC) that inhibits BAX-mediated cell death. We examined whether M109S can protect RGC from optic nerve crush (ONC)-induced apoptosis. M109S was administered starting 5 h after ONC for 7 days. M109S was orally administered in two groups (5 mg/kg twice a day or 7.5 mg/kg once a day). The retina was stained with anti-BRN3A and cleaved Caspase-3 (active Caspase-3) that are the markers of RGC and apoptotic cells, respectively. ONC decreased the number of BRN3A-positive RGC and increased the number of active Caspase-3-expressing apoptotic cells. In ONC-treated retina, there were cells that were double stained with anti-BRN3A and ant-cleaved Caspase-3, indicating that apoptosis in BRN3A-positive RGCs occurred. M109S inhibited the decrease of BRN3A-positive cells whereas it inhibited the increase of active Caspase-3-positive cells in the retina of ONC-treated mice, suggesting that M109S inhibited apoptosis in RGCs. M109S did not induce detectable histological damage to the lungs or kidneys in mice, suggesting that M109S did not show toxicities in the lung or kidneys when the therapeutic dose was used. The present study suggests that M109S is effective in rescuing damaged RGCs. Since M109S is an orally bioactive small compound, M109S may become the basis for a portable patient-friendly medicine that can be used to prevent blindness by rescuing damaged optic nerve cells from death.


Asunto(s)
Apoptosis , Compresión Nerviosa , Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Ratones , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/patología , Apoptosis/efectos de los fármacos , Masculino , Caspasa 3/metabolismo , Ratones Endogámicos C57BL , Citoprotección/efectos de los fármacos , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología
18.
J Pharm Bioallied Sci ; 16(Suppl 2): S1291-S1294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882866

RESUMEN

Diabetes mellitus is a persistent metabolic condition marked by elevated blood glucose levels due to compromised insulin secretion or functionality. The search for natural antidiabetic agents has gained attention due to their potential effectiveness and safety profiles. Sessuvium portulacastrum, a coastal plant, has been traditionally used for various medicinal purposes. This study investigates the antidiabetic potential of Sessuvium portulacastrum aqueous extract by analyzing its inhibitory effects on key enzymes involved in carbohydrate metabolism and exploring its molecular interactions with critical target proteins. The aqueous extract of Sessuvium portulacastrum was prepared and used for in vitro analysis. The reduced activity of the extract against α-amylase and α-glucosidase enzymes, crucial in glucose absorption and postprandial hyperglycemia, was assessed. Molecular docking techniques were employed to explore the potential interactions between active compounds in the extract and diabetes-related proteins, including BAX, GSK3ß, and CADH. The study revealed significant inhibition of both alpha-amylase and alpha-glucosidase enzymes by Sessuvium portulacastrum aqueous extract, indicating its potential to reduce glucose absorption and postprandial hyperglycemia. Moreover, the molecular docking analysis demonstrated strong binding interactions between active compounds in the extract and key proteins involved in diabetes-related pathways, namely apoptotic pathways, glycogen synthesis, and cell adhesion. The findings of this study highlight the promising antidiabetic potential of Sessuvium portulacastrum aqueous extract. Upcoming research should get an attention on isolating and characterizing the active compounds responsible for these effects on antidiabetic therapies from natural sources.

19.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872006

RESUMEN

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Asunto(s)
Apoptosis , Neoplasias del Colon , Glucógeno Sintasa Quinasa 3 beta , Harmina , Peganum , Semillas , Humanos , Peganum/química , Células HCT116 , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Semillas/química , Harmina/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alcaloides/farmacología , Harmalina/farmacología , Antineoplásicos Fitogénicos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proliferación Celular/efectos de los fármacos
20.
Acta Pharm Sin B ; 14(6): 2378-2401, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828138

RESUMEN

For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA