Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000769

RESUMEN

Microbial contamination can occur on the surfaces of blow-molded bottles, necessitating the development and application of effective anti-microbial treatments to mitigate the hazards associated with microbial growth. In this study, new methods of incorporating anti-microbial particles into linear low-density polyethylene (LLDPE) extrusion blow-molded bottles were developed. The anti-microbial particles were thermally embossed on the external surface of the bottle through two particle deposition approaches (spray and powder) over the mold cavity. The produced bottles were studied for their thermal, mechanical, gas barrier, and anti-microbial properties. Both deposition approaches indicated a significant enhancement in anti-microbial activity, as well as barrier properties, while maintaining thermal and mechanical performance. Considering both the effect of anti-microbial agents and variations in tensile bar weight and thickness, the statistical analysis of the mechanical properties showed that applying the anti-microbial agents had no significant influence on the tensile properties of the blow-molded bottles. The external fixation of the particles over the surface of the bottles would result in optimum anti-microbial activity, making it a cost-effective solution compared to conventional compounding processing.

2.
Proc Natl Acad Sci U S A ; 121(27): e2402587121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923994

RESUMEN

Morphogenesis is one of the most marvelous natural phenomena. The morphological characteristics of biological organs develop through growth, which is often triggered by mechanical force. In this study, we propose a bioinspired strategy for hydrogel morphogenesis through force-controlled chemical reaction and growth under isothermal conditions. We adopted a double network (DN) hydrogel with sacrificial bonds. Applying mechanical force to the gel caused deformation and sacrificial bond rupture. By supplying monomers to the gel, the radicals generated by the bond rupture triggered the formation of a new network inside the deformed gel. This new network conferred plasticity to the elastic gel, allowing it to maintain its deformed shape, along with increased volume and strength. We demonstrated that sheet-shaped DN hydrogels rapidly adopted various three-dimensional shapes at ambient temperature when subjected to forces such as drawing and blowing. This mechanism enables morphogenesis of elastic hydrogels and will promote the application of these materials in biomedical fields and soft machines.

3.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674959

RESUMEN

Biodegradable composite films comprising of poly(butylene adipate-co-terephthalate) (PBAT), polylactic acid (PLA), and tetrapod-zinc oxide (T-ZnO) whisker were prepared by a melt-extrusion and blow molding process. The effect of the incorporation of the T-ZnO whisker (1 to 7 wt.%) in the PBAT/PLA blend film was studied systematically. The composite films with an optimal T-ZnO whisker concentration of 3 wt.% exhibited the highest mechanical (tensile strength ~32 MPa), rheological (complex viscosity~1200 Pa.s at 1 rad/s angular frequency), and gas barrier (oxygen permeability~20 cc/m2·day) properties, whereas the composite films with 7 wt.% T-ZnO whiskers exhibited the highest antibacterial properties. The developed composite films can find potential application as antibacterial food packaging materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA