RESUMEN
The heightened vulnerability of individuals with HIV to environmental stressors is well-recognized, yet the role of air pollution in exacerbating HIV-related mortality remains underexplored. In this nationwide, individual-level case-crossover study conducted from 2013 to 2019, we investigated the association between short-term exposure to criteria air pollutants and HIV-related mortality. Our analysis of 38,510 HIV-related deaths revealed significant associations between exposure to PM2.5, PM10, NO2, and CO and increased mortality risk. The effects of PM2.5 and PM10 persisted for two days, whereas NO2 and CO had immediate, same-day impacts. Vulnerability was heightened in individuals under 65 years, males, those with lower educational attainment, and unmarried individuals. Among causes of death, HIV-related malignant neoplasms exhibited the highest sensitivity to particulate matter. Our findings provide novel insights into the relationship between short-term air pollution exposure and HIV-related mortality, emphasizing the increased susceptibility of this immunocompromised population. The results underscore the need for targeted public health interventions to reduce pollution exposure, particularly for the most at-risk demographic groups. This study contributes to a deeper understanding of environmental health risks faced by individuals living with HIV and informs evidence-based policy recommendations.
RESUMEN
BACKGROUND: The role of prescribed opioids and benzodiazepines as risk factors for opioid overdose are well established, however, their role as potential 'triggers' of opioid overdose has not been formally investigated. OBJECTIVE: The objective of this study was to evaluate the temporal relationship between controlled substance acquisition and opioid overdose utilizing a case-crossover design. METHODS: This study utilized Arkansas statewide data between 2014 and 2020. Prescription Drug Monitoring Program (PDMP) data were used to assess controlled substance acquisition and fatal and non-fatal opioid overdose were assessed using linked death certificate, inpatient discharge, and emergency department (ED) data. All persons residing in Arkansas who experienced an opioid overdose or had ≥ 1 Arkansas PDMP prescription fill(s) were included. Controlled substance characteristics were described in the 7 days prior to overdose and compared to the controlled substance characteristics in 11 weekly (7-day) control windows prior to overdose. Binary controlled substance variables indicating presence or absence of: any controlled substance, opioid, benzodiazepine, stimulant, sedative, carisoprodol, opioid and benzodiazepine, and opioid and benzodiazepine and carisoprodol were created. Additionally, total morphine milliequivalents were calculated for each time window. Conditional logistic regression models were estimated and adjusted odds ratios for each controlled substance characteristic after accounting for other controlled substance, and prior overdose, and clinical characteristics derived from ED and inpatient data are reported. RESULTS: A total of 2,818,135 individuals with ≥1 Arkansas PDMP record(s) (45.10 % male; 39.94 mean age) were included, of which 28,670 (1.02 %) experienced ≥1 opioid overdose. There was a significant association between opioid overdose and the acquisition of a controlled substance (OR=1.785; p < 0.001), opioid (OR=1.992; p < 0.001), benzodiazepine (OR=1.379; p < 0.001), carisoprodol (OR=1.744; p < 0.001), opioid and benzodiazepine (OR=2.203; p < 0.001), and opioid and benzodiazepine and carisoprodol (OR=2.503; p < 0.001), in the 7 days prior to an opioid overdose event. CONCLUSION: Controlled substance prescription acquisition, particularly opioids in combination with carisoprodol and/or benzodiazepines, are potential triggers of opioid overdose.
RESUMEN
With higher temperatures expected in the future due to global climate change, addressing health risks such as heat illness is increasingly important. In Japan, thousands of heat illness cases occur annually during school sports club activities. The risk may vary by sport, location, and region, but how heat safety thresholds (HSTs) should be adjusted to provide effective guidelines remains uncertain. Thus, we conducted a case-crossover study using data of heat illness cases and wet-bulb globe temperature (WBGT) throughout Japan to evaluate the heat illness risk for the current HSTs and propose adjustments. A significant relationship was found between heat illness incidence and WBGT at the time of the incident, as well as the average WBGT one and two days prior. The risk significantly varies with factors such as club, region, location, year, month, and the average WBGT in summer. Therefore, we recommend lowering the current HSTs by one category (3 °C) in the following cases: (1) clubs at high risk (baseball, softball, soccer/futsal, tennis, track and field, kyudo, and other with sustained exercise or thick uniforms); (2) from April to June; (3) in cooler regions (Hokkaido, Tohoku, Hokuriku, or where the average WBGT in summerâ¦18â); (4) for outdoor activities; (5) when heat rapidly increases without adequate heat acclimatization. These findings may inform educators, students, sports authorities, and policymakers in adjusting HSTs to reduce the incidence of heat illness, thereby ensuring safer environments for school sports activities.
RESUMEN
OBJECTIVES: This study aimed to establish the exposure-lag-response effect between daily maximum temperature and stroke-related emergency department visits and to project heat-induced stroke impacts under global warming levels (GWL) of 2 °C and 4 °C. METHODS: Stroke-related emergency department visits in Taiwan from 2001 to 2020 were identified using the National Health Insurance Research Database (NHIRD). The study population consisted of 1,100,074 initial stroke cases matched with 2,200,148 non-stroke controls. We employed Distributed Lag Nonlinear Models (DLNM) in a case-crossover study to investigate the association between temperature and stroke. Generalized Estimating Equations (GEE) models with a Poisson function were used to correlate high-temperature exposure with annual stroke incidence rates. Projections were made under two global warming scenarios, GWL 2.0 °C and 4.0 °C, using Coupled General Circulation Model (GCMs). Baseline data from 1995 to 2014 were transformed for spatial distribution at the township level. Geographic Information System (GIS) spatial analysis was performed using Quantum GIS 3.2.0 software. RESULTS: DLNM exposure-lag-response effect revealed that daily maximum temperature exceeding 34 °C significantly increased the risk of stroke-related emergency department visits, particularly for ischemic stroke. Under the 2 °C GWL scenario, the frequency of days with temperatures surpassing 34 °C is projected to rise substantially by the median year of 2042, with a further increase to 92.6 ± 18.0 days/year by 2065 under the 4 °C GWL scenario. Ischemic stroke showed the highest increase in temperature-related incidence rates, notably rising from 7.80% under the GWL 2 °C to 36.06% under the GWL 4 °C. Specifically, the annual temperature-related incidence rate for ischemic stroke is expected to increase significantly by 2065. Regions such as Taichung, Hsinchu, Yilan, and Taitung demonstrated pronounced changes in heat-related ischemic stroke incidence under the GWL 4 °C. CONCLUSIONS: The findings emphasize the importance of addressing temperature-related stroke risks, particularly in regions projected to experience significant temperature increases. Effective mitigation strategies are crucial to reduce the impact of rising temperatures on stroke incidence and safeguard public health.
Asunto(s)
Calentamiento Global , Accidente Cerebrovascular , Humanos , Taiwán/epidemiología , Incidencia , Calentamiento Global/estadística & datos numéricos , Accidente Cerebrovascular/epidemiología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Cruzados , Servicio de Urgencia en Hospital/estadística & datos numéricos , Cambio Climático , Calor/efectos adversos , Predicción/métodos , AdultoRESUMEN
BACKGROUND: Fine particulate matter (PM2.5) pollution and extreme temperature events (ETEs) are main environmental threats to human health. Elevated stroke mortality has been growingly linked to PM2.5 mass exposure, while its relationship with PM2.5 constituents was extensively unstudied across the globe. Additionally, no prior assessments have investigated the interactive effects of PM2.5 constituents and ETEs on stroke mortality. METHODS: Province-wide records of 320,372 stroke deaths collected in eastern China during 2016-2019 were analyzed using an individual-level time-stratified case-crossover design. Daily gridded estimates of PM2.5 mass and its major constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were assigned to stroke cases on case days and control days at the residential address. We assessed 12 ETEs defined by multiple combinations of air temperature thresholds (2.5-10th percentiles for cold spell, 90-97.5th percentiles for heat wave) and durations (2-4 days). Conditional logistic regression model was applied to investigate associations of short-term exposure to PM2.5 constituents and ETEs with stroke mortality. Odds ratio and its 95% confidence interval (CI) were assessed for an interquartile range (IQR) increase in each PM2.5 constituent and on ETEs days compared with non-ETEs days. Additive interactive effects were quantitatively evaluated via relative excess odds due to interaction (REOI), attributable proportion due to interaction (AP), and synergy index (SI). RESULTS: Elevated overall stroke mortality was significantly related to PM2.5 constituents, with the largest odds observed for NO3- (1.04, 95% CI: 1.03-1.04, IQR = 11.25 µg/m3), followed by OM (1.03, 1.03-1.04, IQR = 7.97 µg/m3), NH4+ (1.03, 1.02-1.04, IQR = 6.66 µg/m3), BC (1.03, 1.02-1.03, IQR = 1.41 µg/m3), and SO42- (1.03, 1.02-1.03, IQR = 6.67 µg/m3). Overall, higher risks of stroke mortality were identified in analyses using more rigorous thresholds and lengthened durations of ETEs definitions, ranging from 1.19 (1.17-1.21) to 1.55 (1.51-1.60) for heat wave, and 1.03 (1.02-1.05) to 1.11 (1.08-1.15) for cold spell, respectively. We observed consistent evidence for the synergistic effects of heat wave and PM2.5 constituents on both ischemic and hemorrhagic stroke mortality, where compound exposures to heat wave and secondary inorganic aerosols (i.e., NO3-, SO42-, and NH4+) posed greater increases in risk (0.23< REOI <0.81, 0.16< AP <0.39, and 2.63< SI <8.19). CONCLUSIONS: Short-term exposure to both PM2.5 constituents and ETEs were associated with heightened stroke mortality, and heat wave may interact synergistically with PM2.5 constituents to trigger stroke deaths.
RESUMEN
BACKGROUND: Recently pilot published city-level air quality health index (AQHI) provides a useful tool for communicating short-term health risks of ambient air pollution, but fails to account for intracity spatial heterogeneity in exposure and associated population health impacts. This study aims to develop the intracity spatiotemporal AQHI (ST-AQHI) via refined air pollution-related health risk assessments. METHODS: A three-stage analysis was conducted through integrating province-wide death surveillance data and high-resolution gridded estimates of air pollution and climate factors spanning 2016-2019 in Jiangsu Province, eastern China. First, an individual-level case-crossover design was employed to quantify the short-term risk of nonaccidental mortality associated with residential exposure to individual pollutant (i.e., PM2.5, NO2, O3, and SO2). Second, we accumulated and scaled the excess risks arising from multiple pollutants to formulate daily gridded ST-AQHI estimates at 0.1° × 0.1°, dividing exposure-related risks into low (0-3), moderate (4-6), high (7-9), and extreme high (10+) levels. Finally, the effectiveness of ST-AQHI as composite risk communication was validated through checking the dose-response associations of individual ST-AQHI exposure with deaths from nonaccidental and major cardiopulmonary causes via repeating case-crossover analyses. RESULTS: We analyzed a total of 1,905,209 nonaccidental death cases, comprising 785,567 from circulatory diseases and 247,336 from respiratory diseases. In the first-stage analysis, for each 10-µg/m3 rise in PM2.5, NO2, O3, and SO2 exposure at lag-01 day, population risk of nonaccidental death was increased by 0.8% (95% confidence interval: 0.7%, 0.9%), 1.9% (1.7%, 2.0%), 0.4% (0.3%, 0.5%), and 4.1% (3.7%, 4.5%), respectively. Spatiotemporal distribution of ST-AQHI exhibited a consistent declining trend throughout the study period (2016-2019), with annual average ST-AQHI decreasing from 5.2 ± 1.3 to 4.0 ± 1.0 and high-risk days dropping from 15.8% (58 days) to 1.6% (6 days). Exposure associated health risks showed great intracity- and between-city heterogeneities. In the validation analysis, ST-AQHI demonstrated approximately linear, threshold-free associations with multiple death events from nonaccidental and major cardiopulmonary causes, suggesting excellent performance in predicting exposure-related health risks. Specifically, each 1-unit rise in ST-AQHI was significantly associated with an excess risk of 2.0% (1.8%, 2.1%) for nonaccidental mortality, 2.3% (2.1%, 2.6%) for overall circulatory mortality, and 2.7% (2.3%, 3.1%) for overall respiratory mortality, as well as 1.7%-3.0% for major cardiopulmonary sub-causes. CONCLUSIONS: ST-AQHI developed in this study performed well in predicting intracity spatiotemporal heterogeneity of death risks related to multiple air pollutants, and may hold significant practical importance in communicating air pollution-related health risks to the public at the community scales.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , China , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Medición de Riesgo , Material Particulado/análisis , Monitoreo del Ambiente , Análisis Espacio-TemporalRESUMEN
BACKGROUND: Short-term exposure to particulate matter air pollution has been associated with the exacerbations of COPD, but its association with COPD mortality was not fully elucidated. We aimed to assess the association between short-term particulate matter exposure and the risk of COPD mortality in China using individual-level data. METHODS: We derived 2.26 million COPD deaths from a national death registry database in Chinese mainland between 2013 and 2019. Exposures to fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) were assessed by satellite-based models of a 1 × 1 km resolution and assigned to each individual based on residential address. The associations of PM2.5 and PM2.5-10 with COPD mortality were examined using a time-stratified case-crossover design and conditional logistic regressions with distributed lag models. We further conducted stratified analyses by age, sex, education level, and season. FINDINGS: Short-term exposures to both PM2.5 and PM2.5-10 were associated with increased risks of COPD mortality. These associations appeared and peaked on the concurrent day, attenuated and became nonsignificant after 5 or 7 days, respectively. The exposure-response curves were approximately linear without discernible thresholds. An interquartile range increase in PM2.5 and PM2.5-10 concentrations was associated with 4.23% (95% CI: 3.75%, 4.72%) and 2.67% (95% CI: 2.18%, 3.16%) higher risks of COPD mortality over lag 0-7 d, respectively. The associations of PM2.5 and PM2.5-10 attenuated slightly but were still significant in the mutual-adjustment models. A larger association of PM2.5-10 was observed in the warm season. INTERPRETATION: This individual-level, nationwide, case-crossover study suggests that short-term exposure to PM2.5 and PM2.5-10 might act as one of the environmental risk factors for COPD mortality. FUNDING: This study is supported by the National Key Research and Development Program of China (2023YFC3708304 and 2022YFC3702701), the National Natural Science Foundation of China (82304090 and 82030103), the 3-year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.2-YQ31), and the Science and Technology Commission of Shanghai Municipality (21TQ015).
Asunto(s)
Contaminación del Aire , Estudios Cruzados , Exposición a Riesgos Ambientales , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , China/epidemiología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Factores de Riesgo , Anciano de 80 o más Años , Estaciones del AñoRESUMEN
Short-term ambient fine particulate matter (PM2.5) exposure has been related to an increased risk of myocardial infarction (MI) death, but which PM2.5 constituents are associated with MI death and to what extent remain unclear. We aimed to explore the associations of short-term exposure to PM2.5 constituents with MI death and evaluate excess mortality. We conducted a time-stratified case-crossover study on 237,492 MI decedents in Jiangsu province, China during 2015-2021. Utilizing a validated PM2.5 constituents grid dataset at 1 km spatial resolution, we estimated black carbon (BC), organic carbon (OC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-) exposure by extracting daily concentrations grounding on the home address of each subject. We employed conditional logistic regression models to evaluate the exposure-response relationship between PM2.5 constituents and MI death. Overall, per interquartile range (IQR) increase of BC (lag 06-day; IQR: 1.75 µg/m3) and SO42- (lag 04-day; IQR: 5.06 µg/m3) exposures were significantly associated with a 3.91% and 2.94% increase in odds of MI death, respectively, and no significant departure from linearity was identified in the exposure-response curves for BC and SO42-. If BC and SO42- exposures were reduced to theoretical minimal risk exposure concentration (0.89 µg/m3 and 1.51 µg/m3), an estimate of 4.55% and 4.80% MI deaths would be avoided, respectively. We did not find robust associations of OC, NO3-, NH4+, and Cl- exposures with MI death. Individuals aged ≥80 years were more vulnerable to PM2.5 constituent exposures in MI death (p for difference <0.05). In conclusion, short-term exposure to PM2.5-bound BC and SO42- was significantly associated with increased odds of MI death and resulted in extensive excess mortality, notably in older adults. Our findings emphasized the necessity of reducing toxic PM2.5 constituent exposures to prevent deaths from MI and warranted further studies on the relative contribution of specific constituents.
Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Infarto del Miocardio , Material Particulado , Material Particulado/análisis , Infarto del Miocardio/mortalidad , Infarto del Miocardio/epidemiología , Infarto del Miocardio/inducido químicamente , Contaminantes Atmosféricos/análisis , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , China/epidemiología , Masculino , Persona de Mediana Edad , Anciano , Femenino , Estudios Cruzados , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/efectos adversos , Anciano de 80 o más Años , Nitratos/análisisRESUMEN
Exposure to ambient ozone (O3) is linked to increased mortality risks from various diseases, but epidemiological investigations delving into its potential implications for cancer mortality are limited. We aimed to examine the association between short-term O3 exposure and site-specific cancer mortality and investigate vulnerable subgroups in Brazil. In total 3,459,826 cancer death records from 5570 Brazilian municipalities between 2000 and 2019, were included. Municipal average daily O3 concentration was calculated from a global estimation at 0.25°×0.25° spatial resolution. The time-stratified case-crossover design was applied to assess the O3-cancer mortality association. Subgroup analyses by age, sex, season, time-period, region, urban hierarchy, climate classification, quantiles of GDP per capita and illiteracy rates were performed. A linear and non-threshold exposure-response relationship was observed for short-term exposure to O3 with cancer mortality, with a 1.00% (95% CI: 0.79%-1.20%) increase in all-cancer mortality risks for each 10-µg/m3 increment of three-day average O3. Kidney cancer was most strongly with O3 exposure, followed by cancers of the prostate, stomach, breast, lymphoma, brain and lung. The associated cancer risks were relatively higher in the warm season and in southern Brazil, with a decreasing trend over time. When restricting O3 concentration to the national minimum value during 2000-2019, a total of 147,074 (116,690-177,451) cancer deaths could be avoided in Brazil, which included 17,836 (7014-28,653) lung cancer deaths. Notably, these associations persisted despite observed adaptation within the Brazilian population, highlighting the need for a focus on incorporating specific measures to mitigate O3 exposure into cancer care recommendations.
RESUMEN
The changing climate poses a growing challenge to the population health. The objective of this study was to assess the association between ambient temperature and cause-specific mortality in Suzhou. Based on the non-accidental mortality data collected during 2008-2022 in Suzhou, China, this study utilized an individual-level case-crossover design to evaluate the associations of temperature with cause-specific mortality. We applied a distributed lag nonlinear model with a maximum lag of 14 days to account for lag effects. Mortality risk due to extreme cold (<2.5th percentile) and extreme heat (>97.5th percentile) was analyzed. A total of 634,530 non-accidental deaths were analyzed in this study. An inverse J-shaped exposure-response relationship was observed between ambient temperature and non-accidental mortality, with the minimum mortality temperature (MMT) at 29.1â. The relative risk (RR) of mortality associated with extreme cold (2.5th percentile) was 1.37 [95â¯% confidence interval (CI): 1.30, 1.44], higher than estimate of 1.09 (95â¯%CI: 1.07, 1.11) for extreme heat (97.5th percentile) relative to the MMT. Heat effect lasted for 2-3 days, while cold effect could persist for almost 14 days. Higher mortality risk estimates were observed for cardiorespiratory deaths compared to total deaths, with statistically significant between-group differences. Consequently, this study provides first-hand evidence on the associations between ambient temperatures and mortality risks from various causes, which could help local government and policy-makers in designing targeted strategies and public health measures against the menace of climate change.
Asunto(s)
Estudios Cruzados , China/epidemiología , Humanos , Femenino , Masculino , Mortalidad/tendencias , Persona de Mediana Edad , Cambio Climático , Adulto , Temperatura , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Anciano , Causas de Muerte , Adulto Joven , Calor Extremo/efectos adversosRESUMEN
BACKGROUND: The short-term adverse effects of ambient fine particulate matter (PM2.5) and ozone (O3) on anxiety disorders (ADs) remained inconclusive. METHODS: We applied an individual-level time-stratified case-crossover study, which including 126,112 outpatient visits for ADs during 2019-2021 in Guangdong province, China, to investigate the association of short-term exposure to PM2.5 and O3 with outpatient visits for ADs, and estimate excess outpatient visits in South China. Daily residential air pollutant exposure assessments were performed by extracting grid data (spatial resolution: 1 km × 1 km) from validated datasets. We employed the conditional logistic regression model to quantify the associations and excess outpatient visits. RESULTS: The results of the single-pollutant models showed that each 10 µg/m3 increase of PM2.5 and O3 exposures was significantly associated with a 3.14 % (95 % confidence interval: 2.47 %, 3.81 %) and 0.88 % (0.49 %, 1.26 %) increase in odds of outpatient visits for ADs, respectively. These associations remained robust in 2-pollutant models. The proportion of outpatient visits attributable to PM2.5 and O3 exposures was up to 7.20 % and 8.93 %, respectively. Older adults appeared to be more susceptible to PM2.5 exposure, especially in cool season, and subjects with recurrent outpatient visits were more susceptible to O3 exposure. LIMITATION: As our study subjects were from one single hospital in China, it should be cautious when generalizing our findings to other regions. CONCLUSION: Short-term exposure to ambient PM2.5 and O3 was significantly associated with a higher odds of outpatient visits for ADs, which can contribute to considerable excess outpatient visits.
Asunto(s)
Contaminantes Atmosféricos , Trastornos de Ansiedad , Estudios Cruzados , Exposición a Riesgos Ambientales , Ozono , Material Particulado , Humanos , Material Particulado/efectos adversos , Ozono/efectos adversos , China/epidemiología , Masculino , Femenino , Trastornos de Ansiedad/epidemiología , Adulto , Persona de Mediana Edad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Pacientes Ambulatorios/estadística & datos numéricos , Adulto Joven , Anciano , Adolescente , Atención Ambulatoria/estadística & datos numéricosRESUMEN
BACKGROUND: The coronavirus disease 2019 (COVID-19) rapidly spreads worldwide and causes more suffering. The relation about the aggravation of inguinal pain and COVID-19 was unclear in patients with total hip arthroplasty (THA). This study aimed to evaluate the risk of groin pain aggravation in short-term THA patients after COVID-19. METHODS: Between 2020 and 2022, 129 patients with THA who were affected COVID-19 were enrolled. A short-standardized questionnaire was administered during follow-up to inquire about the aggravation of groin ache before and after SARS-COV-2 affection. Furthermore, we evaluated the potential association between the presence of increased pain and various factors, including age, gender, body mass index, diagnosis, and length of hospital stay. RESULTS: The case-crossover study revealed an increased risk of inguinal soreness aggravation when comparing 8 weeks after COVID-19 with 12 weeks before COVID-19 (Relative risk [RR], 9.5; 95% Confidence intervals [CI], 2.259-39.954). For COVID-19 positive patients, multivariate analysis showed length of stay was an independent factor significantly associated with increased risk of aggravation of groin pain (Odds ratio [OR], 1.26; 95%CI, 1.03-1.55, p = 0.027). CONCLUSION: This study confirms the association between COVID-19 and the exacerbation of soreness in the groin region in THA patients and extended length of stay is a possible contributing factor. This study expands the current literature by investigating the risk of aggravation of inguinal pain in patients with THA after COVID-19, providing valuable insights into postoperative outcomes in this specific population. Trial registration This retrospective study was approved by the Institutional Review Board of Shanghai general hospital (No.2023-264).
Asunto(s)
Artroplastia de Reemplazo de Cadera , COVID-19 , Estudios Cruzados , Ingle , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , Artroplastia de Reemplazo de Cadera/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Dolor Postoperatorio/etiología , Dolor Postoperatorio/epidemiología , Tiempo de Internación , Factores de Tiempo , Adulto , Anciano de 80 o más Años , Factores de RiesgoRESUMEN
OBJECTIVE: Emerging evidence supports that brain dysfunction may be attributable to environmental factors. This study aims to examine associations of ambient temperature and temperature variability (TV) with seizure incidence in children, which has not been explored. MATERIAL AND METHODS: Data on 2718 outpatient visits due to seizure were collected in Shanghai, China, from 2018 to 2023. Exposure to ambient temperature was estimated at children's residential addresses using spatial-temporal models. A time-stratified case-crossover design with a distributed lag non-linear model (DLNM) was conducted to assess the association between seizure incidence and daily average of ambient temperature over a period of 21 days prior to a case date of disease onset. For a given case date, we selected all dates falling on the same day of the week within the same month as control dates. We calculated a composite index of intra-day and inter-day TV, which was the standard deviation of the daily minimum and maximum temperatures, respectively, over 7 days preceding a case date. We then assessed the association between TV and seizure incidence. Stratified analyses were conducted by age (73.51% < 5 years old and 26.49 % ≥ 5 years old), sex (41.83% female), presence of fever (69.72%), and diagnosis of epilepsy (27.63%). RESULTS: We observed inversed J-shaped temperature-response curves. Lower temperatures had a significant and prolonged effect than higher temperatures. Using 20 °C (with the minimum effect) as the reference, the cumulative odds ratios (ORs) for over 0-21 days preceding the onset at the 5th percentile of the temperature (3 °C) and at the 95th percentile (29 °C) were 3.17 (95% CI: 1.77, 5.68) and 1.54 (95% CI: 0.97, 2.44), respectively. In addition, per 1 °C increases in TV0-7 was associated with OR of 1.08 (95% CI: 1.01, 1.15). Older children and those experiencing seizure with fever exhibited a higher risk of seizure onset at both lower and higher ambient temperatures. CONCLUSION: Both low and high temperatures can contribute to the morbidity related to pediatric seizure. Lower temperatures, however, exerted a longer period of effect prior to seizure onset than higher temperatures. An increased risk for incident seizure was significantly associated with temperature variability during preceding 7 days.
Asunto(s)
Estudios Cruzados , Convulsiones , Temperatura , Humanos , Convulsiones/epidemiología , Femenino , Masculino , Preescolar , China/epidemiología , Niño , Incidencia , Dinámicas no Lineales , Lactante , Exposición a Riesgos Ambientales/efectos adversosRESUMEN
BACKGROUND: Associations between air pollution and the acute exacerbations (AEs) of COPD have been established primarily in time-series studies in which exposure and case data were at the aggregate level, limiting the identification of susceptible populations. RESEARCH QUESTION: Are air pollutants associated with the onset of AEs of COPD in China? Who is more susceptible to the effects of air pollutants? STUDY DESIGN AND METHODS: Data regarding AEs of COPD were obtained from the Acute Exacerbation of Chronic Obstructive Pulmonary Disease Registry study, and air pollution data were assigned to individuals based on their residential address. We adopted a time-stratified case-crossover study design combined with conditional logistic regression models to estimate the associations between six air pollutants and AEs of COPD. Stratified analyses were performed by individual characteristics, disease severity, COPD types, and the season of exacerbations. RESULTS: A total of 5,746 patients were included. At a 2-day lag, for each interquartile range increase in fine particulate matter (PM2.5) and inhalable particulate matter (PM10) concentrations, ORs for AEs of COPD were 1.054 (95% CI, 1.012-1.097) and 1.050 (95% CI, 1.009-1.092), respectively. The associations were more pronounced in participants who were younger than 65 years, had experienced at least one severe AE of COPD in the past year, received a diagnosis of COPD between 20 and 50 years of age, and experienced AEs of COPD in the cool seasons. By contrast, significant associations for nitrogen dioxide, sulfur dioxide, and carbon monoxide lost significance when excluding patients collected before 2020 or with larger distance from the monitoring station, and no significant association was observed for ozone. INTERPRETATION: This study provides robust evidence that short-term exposure to PM2.5 and PM10 was associated with higher odds of AEs of COPD onset. Individuals who are young, have severe COPD, or whose first diagnosis of COPD was made when they were between 20 and 50 years of age and experience an exacerbation during the cooler seasons may be particularly susceptible. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT2657525; URL: www. CLINICALTRIALS: gov.
RESUMEN
BACKGROUND: The potential health effects of airborne polycyclic aromatic hydrocarbons (PAHs) among general population remained extensively unstudied. This study sought to investigate the association of short-term exposure to low-level total and 7 carcinogenic PAHs with mortality risk. METHODS: We conducted an individual-level time-stratified case-crossover study in Jiangsu province of eastern China, by investigating over 2 million death cases during 2016-2019. Daily concentrations of total PAH and its 7 carcinogenic species including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), chrysene (Chr), dibenz[a,h]anthracene (DahA), and indeno[1,2,3-cd]pyrene (IcdP), predicted by well-validated spatiotemporal models, were assigned to death cases according to their residential addresses. We estimated mortality risk associated with short-term exposure to increase of an interquartile range (IQR) for aforementioned PAHs using conditional logistic regression. RESULTS: An IQR increase (16.9 ng/m3) in 2-day (the current and prior day) moving average of total PAH concentration was associated with risk increases of 1.90% (95% confidence interval [CI]: 1.71-2.09) in all-cause mortality, 1.90% (95% CI: 1.70-2.10) in nonaccidental mortality, 2.01% (95% CI: 1.72-2.29) in circulatory mortality, and 2.53% (95% CI: 2.03-3.02) in respiratory mortality. Risk increases of cause-specific mortality ranged between 1.42-1.90% for BaA (IQR: 1.6 ng/m3), 1.94-2.53% for BaP (IQR: 1.6 ng/m3), 2.45-3.16% for BbF (IQR: 2.8 ng/m3), 2.80-3.65% for BkF (IQR: 1.0 ng/m3), 1.36-1.77% for Chr (IQR: 1.8 ng/m3), 0.77-1.24% for DahA (IQR: 0.8 ng/m3), and 2.96-3.85% for IcdP (IQR: 1.7 ng/m3). CONCLUSIONS: This study provided suggested evidence for heightened mortality risk in relation to short-term exposure to airborne PAHs in general population. Our findings suggest that airborne PAHs may pose a potential threat to public health, emphasizing the need of more population-based evidence to enhance the understanding of health risk under the low-dose exposure scenario.
Asunto(s)
Exposición por Inhalación , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Exposición por Inhalación/estadística & datos numéricos , Mortalidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Carcinógenos/análisis , Carcinógenos/toxicidad , Monitoreo del Ambiente , Benzo(a)pireno , Humanos , Análisis Espacio-Temporal , Modelos Estadísticos , China/epidemiología , Masculino , Femenino , Anciano , Anciano de 80 o más AñosRESUMEN
BACKGROUND AND OBJECTIVES: Many studies suggested that short-term exposure to fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) was linked to elevated risk of cerebrovascular disease. However, little is known about the potentially differential effects of PM2.5 and PM2.5-10 on various types of cerebrovascular disease. METHODS: We collected individual cerebrovascular death records for all residents in Shanghai, China from 2005 to 2021. Residential daily air pollution data were predicted from a satellite model. The associations between particulate matters (PM) and cerebrovascular mortality were investigated by an individual-level, time-stratified, case-crossover design. The data was analyzed by the conditional logistic regression combined with the distributed lag model with a maximum lag of 7 days. Furthermore, we explored the effect modifications by sex, age and season. RESULTS: A total of 388,823 cerebrovascular deaths were included. Monotonous increases were observed for mortality of all cerebrovascular diseases except for hemorrhagic stroke. A 10⯵g/m3 rise in PM2.5 was related to rises of 1.35% [95% confidence interval (CI): 1.04%, 1.66%] in mortality of all cerebrovascular diseases, 1.84% (95% CI: 1.25%, 2.44%) in ischemic stroke, 1.53% (95% CI: 1.07%, 1.99%) in cerebrovascular sequelae and 1.56% (95% CI: 1.08%, 2.05%) in ischemic stroke sequelae. The excess risk estimates per each 10⯵g/m3 rise in PM2.5-10 were 1.47% (95% CI: 1.10%, 1.84%), 1.53% (95% CI: 0.83%, 2.24%), 1.93% (95% CI: 1.38%, 2.49%) and 2.22% (95% CI: 1.64%, 2.81%), respectively. The associations of both pollutants with all cerebrovascular outcomes were robust after controlling for co-pollutants. The associations were greater in females, individuals > 80 years, and during the warm season. CONCLUSIONS: Short-term exposures to both PM2.5 and PM2.5-10 may independently increase the mortality risk of cerebrovascular diseases, particularly of ischemic stroke and stroke sequelae.
Asunto(s)
Contaminantes Atmosféricos , Trastornos Cerebrovasculares , Estudios Cruzados , Material Particulado , Material Particulado/análisis , Material Particulado/toxicidad , Humanos , Masculino , China/epidemiología , Femenino , Persona de Mediana Edad , Anciano , Trastornos Cerebrovasculares/mortalidad , Trastornos Cerebrovasculares/inducido químicamente , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Tamaño de la Partícula , Anciano de 80 o más Años , Adulto , Estaciones del AñoRESUMEN
It is critical to explore intervenable environmental factors in suicide mortality. Based on 30,688 suicide cases obtained from the Mortality Surveillance System of the Jiangsu Provincial Centre for Disease Control and Prevention, we utilized a case-crossover design, and found that the OR of suicide deaths increased by a maximum of 0.71 % (95 % CI: 0.09 %, 1.32 %), 0.68 % (95 % CI: 0.12 %, 1.25 %), 0.77 % (95 % CI: 0.19 %, 1.37 %), 2.95 % (95 % CI: 1.62 %, 4.29 %), 4.18 % (95 % CI: 1.55 %, 6.88 %), and 0.93 % (95 % CI: 0.10 %, 1.77 %), respectively, for per 10 µg/m3 increase in the particulate matter (PM) with diameters ≤ 2.5 µm (PM2.5), PM with diameters ≤ 10 µm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and per 0.1 mg/m3 increase in carbon monoxide (CO) concentrations with the conditional logistic regression analysis. People living in county-level cities were more susceptible. Particularly, a significant positive association was found between air pollutant mixture exposure and suicide deaths (OR=1.04,95 % CI: 1.01, 1.06). The excess fraction of suicide deaths due to air pollution reached a maximum of 8.07 %. In conclusion, we found associations between individual and mixed ambient air pollutants and suicide deaths, informing the development of integrated air pollution management and targeted measures for suicide prevention and intervention. ENVIRONMENTAL IMPLICATION: As a major contributor to the global burden of disease, air pollution was confirmed by accumulating studies to have adverse impact on mental health, and potentially lead to suicide deaths. However, systematic studies on the association between air pollution and suicide mortality are lacking. We explored the associations of multiple air pollutants and pollution mixtures with suicide deaths and assessed excess suicide mortality due to air pollution, emphasizing the importance of air pollution control on suicide prevention. Our study provides evidence to support mechanistic studies on the association between air pollution and suicide, and informs comprehensive air pollution management.
Asunto(s)
Contaminantes Atmosféricos , Estudios Cruzados , Material Particulado , Suicidio , Humanos , Suicidio/estadística & datos numéricos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Masculino , Femenino , Persona de Mediana Edad , Adulto , China/epidemiología , Ozono/toxicidad , Ozono/análisis , Dióxido de Azufre/análisis , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Monóxido de Carbono/análisis , Monóxido de Carbono/toxicidad , Adulto JovenRESUMEN
Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) µg/m3. For every 10-µg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.
Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Neoplasias , Material Particulado , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Brasil/epidemiología , Neoplasias/mortalidad , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Masculino , Femenino , Estudios Cruzados , Persona de Mediana Edad , Anciano , AdultoRESUMEN
OBJECTIVES: This study aims to assess the specific PM2.5-bound metallic elements that contribute to asthma emergency department visits by using a case-crossover study design. METHODS: This study analyzed data from 11,410 asthma emergency department visits as case group and 22,820 non-asthma onset dates occurring one week and two weeks preceding the case day as controls from 2017 to 2020. PM2.5 monitoring data and 35 PM.2.5-bound metallic elements from six different regions in Taiwan were collected. Conditional logistic regression models were used to assess the relationship between asthma and PM2.5-bound metallic elements. RESULTS: Our investigation revealed a statistically significant risk of asthma emergency department visits associated with PM2.5 exposure at lag 0, 1, 2, and 3 during autumn. Additionally, PM2.5-bound hafnium (Hf), thallium (Tl), rubidium (Rb), and aluminum (Al) exhibited a consistently significant positive correlation with asthma emergency department visits at lags 1, 2, and 3. In stratified analyses by area, age, and sex, PM2.5-bound Hf showed a significant and consistent correlation. CONCLUSIONS: This study provides evidence of PM2.5-bound metallic elements effects in asthma exacerbations, particularly for Hf. It emphasizes the importance of understanding the origins of these metallic elements and pursuing emission reductions to mitigate regional health risks.
Asunto(s)
Contaminantes Atmosféricos , Asma , Estudios Cruzados , Servicio de Urgencia en Hospital , Material Particulado , Asma/epidemiología , Asma/inducido químicamente , Taiwán/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Material Particulado/análisis , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Contaminantes Atmosféricos/análisis , Anciano , Adolescente , Adulto Joven , Metales/análisis , Niño , Exposición a Riesgos Ambientales/efectos adversos , Preescolar , Lactante , Visitas a la Sala de EmergenciasRESUMEN
Objectives: The impact of climate change, especially extreme temperatures, on health outcomes has become a global public health concern. Most previous studies focused on the impact of disease incidence or mortality, whereas much less has been done on road traffic injuries (RTIs). This study aimed to explore the effects of ambient temperature, particularly extreme temperature, on road traffic deaths in Jinan city. Methods: Daily data on road traffic deaths and meteorological factors were collected among all residents in Jinan city during 2011-2020. We used a time-stratified case-crossover design with distributed lag nonlinear model to evaluate the association between daily mean temperature, especially extreme temperature and road traffic deaths, and its variation in different subgroups of transportation mode, adjusting for meteorological confounders. Results: A total of 9,794 road traffic deaths were collected in our study. The results showed that extreme temperatures were associated with increased risks of deaths from road traffic injuries and four main subtypes of transportation mode, including walking, Bicycle, Motorcycle and Motor vehicle (except motorcycles), with obviously lag effects. Meanwhile, the negative effects of extreme high temperatures were significantly higher than those of extreme low temperatures. Under low-temperature exposure, the highest cumulative lag effect of 1.355 (95% CI, 1.054, 1.742) for pedal cyclists when cumulated over lag 0 to 6 day, and those for pedestrians, motorcycles and motor vehicle occupants all persisted until 14 days, with ORs of 1.227 (95% CI, 1.102, 1.367), 1.453 (95% CI, 1.214, 1.740) and 1.202 (95% CI, 1.005, 1.438), respectively. Under high-temperature exposure, the highest cumulative lag effect of 3.106 (95% CI, 1.646, 5.861) for motorcycle occupants when cumulated over lag 0 to 12 day, and those for pedestrian, pedal cyclists, and motor vehicle accidents all peaked when persisted until 14 days, with OR values of 1.638 (95% CI, 1.281, 2.094), 2.603 (95% CI, 1.695, 3.997) and 1.603 (95% CI, 1.066, 2.411), respectively. Conclusion: This study provides evidence that ambient temperature is significantly associated with the risk of road traffic injuries accompanied by obvious lag effect, and the associations differ by the mode of transportation. Our findings help to promote a more comprehensive understanding of the relationship between temperature and road traffic injuries, which can be used to establish appropriate public health policies and targeted interventions.