RESUMEN
Traditional Chinese medicine (TCM) contributes significantly to human health. Owing to the complexity of the ingredients in TCM, it is necessary to conduct basic research on effective substances and identify toxic substances to control the safety of medication. Cell membrane chromatography (CMC) is an important method for identifying target components in complex systems. The cell membrane stationary phase (CMSP) is the core component and key factor in determining the effectiveness of CMC. This review summarizes the development of CMSP with different membrane protein immobilization strategies and the application of CMC in the discovery of active and toxic substances in TCM, with the aim of providing an effective means for the discovery of active ingredients and quality control of TCM.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions remain unidentified. AIM OF THE STUDY: This study aimed to screen and identify key active components in MD using a combination of cell membrane chromatography and mass spectrometry, followed by cellular validation. MATERIALS AND METHODS: A TNF-α-induced osteoblast injury model and an osteoblast membrane chromatography screening system were established to select and identify chemical components of MD that directly act on osteoblasts. The protective effects of MD on osteoblasts were assessed by evaluating cell viability, alkaline phosphatase (ALP) activity, cell mineralization and the expression of osteogenesis-related proteins OCN, RUNX2, and the TNF-α receptor protein TNFR1. Validation of the activity of individual components was also conducted. RESULTS: MD significantly improved the viability of osteoblasts under TNF-α-induced injury, enhanced ALP activity, stimulated the expression of OCN and RUNX2 proteins, and decreased the expression of TNFR1. Cell membrane chromatography screening identified 32 chemical components, including 21 flavonoids, 6 organic acids, 2 phenylpropanoids, 2 terpenes, and 1 nucleotide. Molecular docking revealed that isovitexin could bind to the specific receptor TNFR1 on the cell membrane. Furthermore, cellular validation demonstrated that isovitexin significantly protected osteoblasts. CONCLUSIONS: MD and its pharmacologically active component, isovitexin, exhibit protective effects against TNF-α-induced inflammatory injury in osteoblasts, laying a solid foundation for future drug development.
RESUMEN
There is increasing evidence that the activation of glucagon-like peptide-1 receptor (GLP-1R) can be used as a therapeutic intervention for cognitive disorders. Here, we have screened GLP-1R targeted compounds from Scutellaria baicalensis, which revealed baicalein is a potential GLP-1R small-molecule agonist. Mitophagy, a selective autophagy pathway for mitochondrial quality control, plays a neuroprotective role in multiple cognitive impairment diseases. We noticed that Glp1r knock-out (KO) mice present cognitive impairment symptoms and appear worse in spatial learning memory and learning capacity in Morris water maze (MWM) test than their wide-type (WT) counterparts. Our mechanistic studies revealed that mitophagy is impaired in hippocampus tissue of diabetic mice and Glp1r KO mice. Finally, we verified that the cognitive improvement effects of baicalein on diabetic cognitive dysfunction occur through the enhancement of mitophagy in a GLP-1R-dependent manner. Our findings shed light on the importance of GLP-1R for cognitive function maintenance, and revealed the vital significance of GLP-1R for maintaining mitochondrial homeostasis. Furthermore, we identified the therapeutic potential of baicalein in the treatment of cognitive disorder associated with diabetes.
RESUMEN
OBJECTIVES: Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from Pseudolarix kaempferi. This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC. METHODS: Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins. RESULTS: PAB showed strong affinity to FLT4 with a KD value of 3.01 × 10- 6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/ß-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells. CONCLUSION: PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Diterpenos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pulmonares , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Humanos , Proliferación Celular/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular/efectos de los fármacos , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Relación Estructura-Actividad , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga , Células Tumorales Cultivadas , Línea Celular TumoralRESUMEN
The histamine H1 receptor (H1R) plays a pivotal role in allergy initiation and undergoes the necessity of devising a high-throughput screening approach centered on H1R to screen novel ligands effectively. This study suggests a method employing styrene maleic acid (SMA) extraction and His-tag covalent bonding to immobilize H1R membrane proteins, minimizing the interference of nonspecific proteins interference while preserving native protein structure and maximizing target exposure. This approach was utilized to develop a novel material for high-throughput ligand screening and implemented in cell membrane chromatography (CMC). An H1R-His-SMALPs/CMC model was established and its chromatographic performance (selectivity, specificity and lifespan) validated, demonstrating a significant enhancement in lifespan compared to previous CMC models. Subsequently, this model facilitated high-throughput screening of H1R ligands in the compound library and preliminary activity verification of potential H1R antagonists. Identification of a novel H1R antagonist laid the foundation for further development in this area.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Maleatos , Receptores Histamínicos H1 , Ligandos , Maleatos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Histamínicos H1/química , Receptores Histamínicos H1/metabolismo , Humanos , Histidina/química , Animales , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Células CHO , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Antagonistas de los Receptores Histamínicos H1/química , Poliestirenos/química , Cricetulus , Oligopéptidos/químicaRESUMEN
Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.
RESUMEN
Mas-related G protein-coupled receptor X2 (MrgprX2) is acknowledged as a mast cell-specific receptor, playing a crucial role in orchestrating anaphylactoid responses through mast cell degranulation. It holds promise as a target for regulating allergic and inflammatory diseases mediated by mast cells. Polygonum cuspidatum (PC) has shown notable anti-anaphylactoid effects, while its pharmacologically active components remain unclear. In this study, we successfully utilized MrgprX2 high-expressing cell membrane chromatography (CMC), in conjunction with liquid chromatography-mass spectrometry (LC-MS), to identify active anti-anaphylactoid components in PC. Our study pinpointed polydatin, resveratrol, and emodin-8-O-ß-d-glucoside as potential anti-anaphylactoid compounds in PC. Their anti-anaphylactoid activities were evaluated through ß-aminohexosidase and histamine release assays, demonstrating a concentration-dependent inhibition for both ß-aminohexosidase and histamine release. This approach, integrating MrgprX2 high-expression CMC with LC-MS, proves effective in screening potential anti-anaphylactoid ingredients in natural herbal medicines. The findings from this study illuminated the anti-anaphylactoid properties of specific components in PC and provided an efficient method for the drug development of natural products.
Asunto(s)
Fallopia japonica , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido , Receptores Acoplados a Proteínas G/metabolismo , Fallopia japonica/química , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/antagonistas & inhibidores , Humanos , Espectrometría de Masas , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Cromatografía Liquida , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucósidos/farmacología , Glucósidos/química , Glucósidos/análisis , Estructura Molecular , Cromatografía Líquida con Espectrometría de MasasRESUMEN
Non-Hodgkin lymphoma (NHL) is a heterogeneous group of malignant tumors occurring in B or T lymphocytes, and no small molecule-positive drugs to treat NHL have been marketed. Cluster of differentiation 20 (CD20) is an important molecule regulating signaling for the life and differentiation of B lymphocytes and possesses the characteristics of a drug target for treating NHL. 2-Methoxyestradiol induces apoptosis in lymphoma Raji cells and CD20 protein is highly expressed by Raji lymphoma cells. Therefore, in this study, a CD20-SNAP-tag/CMC model was developed to validate the interaction of 2-methoxyestradiol with CD20. 2-Methoxyestradiol was used as a small molecule control compound, and the system was validated for good applicability. The cell membrane chromatography model was combined with high-performance liquid chromatography ion trap time-of-flight mass spectroscopy (HPLC-IT-TOF-MS) in a two-dimensional system to successfully identify, analyze, and characterize the potential active compounds of Schisandra chinensis (Turcz.) Baill. extract and Lysionotus pauciflorus Maxim. extract, including Schisandrin A, Schizandrol A, Schizandrol B, Schisantherin B, and Nevadensin, which can act on CD20 receptors. The five potential active compounds were analyzed by non-linear chromatography. The thermodynamic and kinetic parameters of their interaction with CD20 were also analyzed, and the mode of interaction was simulated by molecular docking. Their inhibitory effects on lymphoma cell growth were assessed using a Cell Counting Kit-8 (CCK-8). Nevadensin and Schizandrin A were able to induce apoptosis in Raji cells within a certain concentration range. In conclusion, the present experiments provide some bases for improving NHL treatment and developing small molecule lead compounds targeting CD20 with low toxicity and high specificity.
Asunto(s)
Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos , Humanos , 2-Metoxiestradiol , Células Inmovilizadas/química , Cromatografía Líquida de Alta Presión/métodos , Ciclooctanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Cromatografía de Gases y Espectrometría de Masas , Lignanos/análisis , Linfoma/tratamiento farmacológico , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Compuestos Policíclicos , Schisandra/químicaRESUMEN
Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.
Asunto(s)
Evodia , Neoplasias Gastrointestinales , Humanos , Mesilato de Imatinib/farmacología , Evodia/química , Cromatografía Líquida con Espectrometría de Masas , Reproducibilidad de los Resultados , Proteínas Tirosina Quinasas Receptoras , Neoplasias Gastrointestinales/tratamiento farmacológico , Membrana CelularRESUMEN
Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.
Asunto(s)
Gota , Indoles , Plantago , Polímeros , Humanos , Gel de Sílice , Dióxido de Silicio , Membrana Celular , Proteínas de la Membrana , Riñón , Cromatografía , ExcipientesRESUMEN
The SNAP-tag-epidermal growth factor receptor (SNAP-tag-EGFR) cell membrane chromatography (CMC) model is a powerful tool for investigating ligand-receptor interactions and screening active ingredients in traditional Chinese medicine. Most tyrosine kinase inhibitors (TKIs) target epidermal growth factor receptors. However, TKIs associated with significant side effects and drug resistance must be addressed immediately. Therefore, there is an urgent need to develop new TKIs with high efficiency and low toxicity. Because of its low toxicity and side effects, traditional Chinese medicine has been widely employed to treat various diseases, including cancer. Hence, this study aimed to use the SNAP-tag-EGFR/CMC-high-performance liquid chromatography-mass spectrometry (HPLC-MS) two-dimensional system model as the research tool to screen and identify potential EGFR antagonists from the Chinese medicine Silybum marianum (L.) Gaertn. The applicability of the system was verified using the positive control drug osimertinib. Four potential EGFR antagonists were screened from the Chinese medicine Silybum marianum (L.) Gaertn.. They were identified as silydianin, silychristin, silybin, and isosilybin. Additionally, their pharmacological activity was preliminarily verified using a CCK-8 assay. The kinetic parameters of the four active ingredients interacting with EGFR and their binding modes with EGFR were analyzed using nonlinear chromatography (NLC) and molecular docking. This study identified silydianin, silychristin, silybin, and isosilybin from Silybum marianum (L.) Gaertn. and verified their potential antitumor effects on EGFR.
Asunto(s)
Silybum marianum , Silimarina , Silibina , Simulación del Acoplamiento Molecular , Membrana Celular/química , Receptores ErbB , CromatografíaRESUMEN
Magnolol and honokiol have been reported to exhibit anti-cancer activity. However, few studies are in relation to the interaction of magnolol/honokiol with vascular endothelial growth factor 2 (VEGFR2). In this study, a membrane chromatography method based on VEGFR2 was established for the interaction characteristic analysis between drug and receptor. The selectivity, repeatability and stability of the chromatographic model were evaluated using drugs acting on different receptors. The affinity between VEGFR2 and magnolol/honokiol was verified by cell membrane chromatography. The binding sites of magnolol/honokiol and VEGFR2 were analyzed by zonal elution. Especially, the dissociation equilibrium constants (Kd) of magnolol/honokiol and VEGFR2 were measured by zonal elution and stepwise frontal analysis respectively. In addition, the actions of magnolol/honokiol on VEGFR2 were analyzed by stepwise frontal analysis at different temperatures. The results showed that the binding sites of magnolol and honokiol on VEGFR2 were different from sorafenib, indicating that magnolol and honokiol could be used as competitive agents for self-competitive displacement experiment. The Kd values (order of magnitude) of magnolol/honokiol with VEGFR2 measured by stepwise frontal analysis were consistent with the zonal elution results. Honokiol binds VEGFR2 with higher affinity than magnolol. The main forces that stabilize the interactions of honokiol with VEGFR2 are hydrogen bonds and van der Waal's forces, and the main force of magnolol is electrostatic forces. These discoveries could assist in the prediction of drug activity and understanding for the underlying mechanism.
Asunto(s)
Lignanos , Factor A de Crecimiento Endotelial Vascular , Compuestos de Bifenilo/química , Cromatografía , Membrana CelularRESUMEN
Membrane protein (MP)-based biomaterials have a wide range of applications in drug screening, antigen detection, and ligand-receptor interaction analysis. Traditional MP immobilization methods have the disadvantage of disordered protein immobilization orientation, leading to the shielded binding domain and unreliable binding pattern. Herein, we describe a site-specific covalent immobilization of MPs, which utilizes the styrene maleic acid (SMA) detergent-free extraction method of MPs as well as the covalent reaction between His-tag and divinyl sulfone (DVS). As an example, we covalently immobilized angiotensin-converting enzyme 2 (ACE2) on a cell membrane chromatography system (ACE2-His-SMALPs/CMC) in a site-specific manner and verified the specificity and stability of this system. This technique significantly improves the service life compared to the physisorption CMC column. The improved protein immobilization strategies of the ACE2-His-SMALPs/CMC system enable it to effectively recognize SARS-CoV-2 pseudoviral particles as well as detect viral particles in ambient air once combined with an aerosol collector; as a powerful ligand biosensor, the ACE2-His-SMALPs/CMC system was used to screen for compounds with anti-SARS-CoV-2 pseudovirus activity. In conclusion, the optimized MP immobilization strategy has been successfully applied to CMC technology, showing enhanced stability and sensitivity, which can provide an efficient and convenient membrane protein immobilization method for biomaterials.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Enzima Convertidora de Angiotensina 2 , Estireno , Evaluación Preclínica de Medicamentos , Ligandos , Proteínas de la Membrana/química , Unión ProteicaRESUMEN
INTRODUCTION: The function of promoting bone regeneration of Moutan Cortex (MC), a traditional Chinese medicine, has been widely known but, the effective components of MC in promoting osteoblast-mediated bone regeneration were still unclear. OBJECTIVE: The method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis was established to screen bone regeneration active components from MC. METHODS: The fingerprints, washing eluate and desorption eluate of MC extract were analyzed by the established HPLC-DAD method. The established MC3T3-E1 cells membrane chromatography method was used for the bio-specific extraction of MC. The isolated compounds were identified by MS spectrometry. The effects and possible mechanisms of the isolated compounds were evaluated by molecular docking, ALP activity, cell viability by MTT Assay and proteins expression by Western Blot Analysis. RESULTS: The active compound responsible for bone regeneration from MC was isolated using the established method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis, and it was identified as 1,2,3,4,6-penta-O-ß-galloyl-D-glucose (PGG) by MS spectrometry. It was further demonstrated through molecular docking that PGG could fit well into the functional ALP, BMP2, and Samd1 binding pocket. The proliferation of osteoblasts was promoted, the level of ALP was increased, and the protein expression of BMP2 and Smad1 was increased as shown by further pharmacological verification. CONCLUSION: It was concluded that PGG, the bone regeneration active compound from MC, could stimulate the proliferation of osteoblasts to promote osteoblast differentiation, and its mechanism might be related to the BMP/Smad1 pathway.
RESUMEN
Analytical screening and validation systems based on a combination of cell membrane chromatography and two-dimensional chromatography-tandem mass spectrometry are incapable of providing prepared samples containing the active ingredients found in traditional Chinese medicine; therefore, these samples cannot be directly used in subsequent studies. In this study, a semi-preparative cell membrane chromatography column was developed using a hydrogel-modified carrier and human umbilical vein endothelial cells to optimize prepared conditions, such as hydrogel polymerization, cell fragmentation, and cell membrane volume. This increased the binding ratio of membrane protein and carrier to 15.79 mg/g. The column was systematically evaluated using multitarget tyrosine kinase inhibitors that displayed good specificity and reproducibility. Subsequently, using the column coupled with a semi-preparative high-performance liquid chromatography-offline-high-performance liquid chromatography-mass spectrometry system, 15 active ingredients were screened and purified from Indigo naturalis, and five main components were identified: l-lysine, oxyresveratrol, tryptanthrin, isorhamnetin, and indirubin. Furthermore, the pharmacological effects of the ingredients were confirmed using cell proliferation and apoptosis assays. Results revealed potent proliferation-inhibiting and apoptosis-promoting abilities on human chronic myelogenous leukemic cells and human promyelocytic leukemic cells (p < 0.001). Overall, the system presented screening and purification functions that could be used to prepare I. naturalis samples acting on the epidermal growth factor receptor and vascular endothelial cell growth factor.
Asunto(s)
Medicamentos Herbarios Chinos , Hidrogeles , Humanos , Cromatografía Líquida de Alta Presión/métodos , Células Endoteliales de la Vena Umbilical Humana , Reproducibilidad de los Resultados , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Extractos Vegetales , Espectrometría de Masas en TándemRESUMEN
Patients have different responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and these may be life-threatening for critically ill patients. Screening components that act on host cell receptors, especially multi-receptor components, is challenging. The in-line combination of dual-targeted cell membrane chromatography and a liquid chromatography-mass spectroscopy (LC-MS) system for analyzing angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 147 (CD147) receptors based on SNAP-tag technology provides a comprehensive solution for screening multiple components in complex samples acting on the two receptors. The selectivity and applicability of the system were validated with encouraging results. Under the optimized conditions, this method was used to screen for antiviral components in Citrus aurantium extracts. The results showed that 25 µmol /L of the active ingredient could inhibit virus entry into cells. Hesperidin, neohesperidin, nobiletin, and tangeretin were identified as antiviral components. In vitro pseudovirus assays and macromolecular cell membrane chromatography further verified the interaction of these four components with host-virus receptors, showing good effects on some or all of the pseudoviruses and host receptors. In conclusion, the in-line dual-targeted cell membrane chromatography LC-MS system developed in this study can be used for the comprehensive screening of antiviral components in complex samples. It also provides new insight into small-molecule drug-receptor and macromolecular-protein-receptor interactions.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Membrana Celular/metabolismo , Antivirales/farmacologíaRESUMEN
In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.
Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Poliestirenos/análisis , Microesferas , Cromatografía Líquida de Alta Presión/métodos , Membrana Celular/químicaRESUMEN
Vinpocetine injection is often used in clinical treatment of acute cardiovascular and cerebrovascular diseases. However, it was reported that vinpocetine injection caused allergic reactions in clinical use; therefore, its safety needs urgent attention. Until now, research on its sensitization is rarely reported. Here, the components contained in three vinpocetine injections were examined. It was found that besides vinpocetine, the synthetic raw material vincamine, the excipients benzyl alcohol and ethyl p-toluenesulfonate, and the impurities A, B, C, and D, which are excipients specified in the European Pharmacopoeia, were also present in them. Then the Mas-related G-protein-coupled receptor X2 (MRGPRX2)-HEK293 cell membrane chromatography was used to investigate the affinity of them with MRGPRX2 and found that vinpocetine, vincamine, and impurities A, B, C, and D bind to MRGPRX2. Afterwards, these compounds were further used to investigate the local sensitization ability in vivo. The results showed that vinpocetine, vincamine, and impurity C could induce swelling of the paw and decrease body temperature in mice, but only impurity C could cause local skin mast cell degranulation and serum histamine release increase. In vitro, the results also indicated that impurity C could increase intracellular [Ca2+ ] in MRGPRX2-HEK293 cells, whereas vinpocetine and vincamine did not. Therefore, the impurity C was the potential anaphylactoid component in vinpocetine injection, which may be one of the reasons for the occurrence of allergic reactions in the clinical use of vinpocetine injection. This work provides evidence on the sensitization of impurity C and also contributes to promoting the clinical safety of vinpocetine injection.
Asunto(s)
Anafilaxia , Vincamina , Humanos , Animales , Ratones , Células HEK293 , Anafilaxia/inducido químicamente , Vincamina/metabolismo , Vincamina/uso terapéutico , Excipientes , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Cromatografía , Mastocitos/metabolismo , Degranulación de la Célula , Proteínas del Tejido Nervioso/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/uso terapéuticoRESUMEN
Astragali Radix (AR) is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer (NK) cells. However, owing to the complexity of its composition, the specific active ingredients in AR that act on NK cells are not clear yet. Cell membrane chromatography (CMC) is mainly used to screen the active ingredients in a complex system of herbal medicines. In this study, a new comprehensive two-dimensional (2D) NK-92MI CMC/C18 column/time-of-flight mass spectrometry (TOFMS) system was established to screen for potential NK cell activators. To obtain a higher column efficiency, 3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column. In total, nine components in AR were screened from this system, which could be washed out from the NK-92MI/CMC column after 10 min, and they showed good affinity for NK-92MI/CMC column. Two representative active compounds of AR, isoastragaloside I and astragaloside IV, promoted the killing effect of NK cells on K562 cells in a dose-dependent manner. It can thus suggest that isoastragaloside I and astragaloside IV are the main immunomodulatory components of AR. This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects.
RESUMEN
Natural products are an important source of major compounds in drug discovery. Currently, rapid screening and identification of bioactive compounds is a challenge due to the complicated chemical composition of natural products. Affinity screening methods based on liquid chromatography coupled with mass spectrometry have seen increasing interest in the past few years. In this review, the various strategies are classified into off-line and on-line modes. The principles and applications of these screening methods such as magnetic nanoparticles, affinity solid-phase extraction, immobilized liposome chromatography and cell membrane chromatography are introduced. This review covers the research advances of LC-MS based screening methods from 2019 to mid 2022, discussing their advantages and disadvantages, and providing an outlook for the future of this field.