Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34128, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100488

RESUMEN

Recently, there has been an increasing demand for medicinal plants to control diseases for good health and well-being, as primary health facilities are inadequate in certain populations to cure infections. Since synthetic medicines are toxic to humans and other animals, the present research is thus focused on using traditional medicine for treating various ailments as they are harmless. Based on the above facts, the current study was conducted to assay the antimicrobial, anti-diabetic, anti-cholinesterase, anti-oxidant, anti-quorum sensing, and anti-antibiotic resistance modifying effect of extracts of Cyperus esculentus. This study found 37 and 30 chemicals in butanol and dichloromethane (DCM) extracts using a gas chromatograph mass spectrophotometer (GC-MS). Most active compounds identified were benzofuran, 2,3-dihydro-, 1,2,3-benzenetriol, 3-bornanone, oxime and oleic acid by extracts of butanol whereas dichloromethane extracted three major active compounds (2,3-dihydro-3,5-dihydroxy-, 4H-pyran-4-one 3-deoxy-d-mannoic lactone and 5-hydroxymethylfurfural). Both dichloromethane and butanol extracts showed the highest antimicrobial activity. Compared to aqueous extracts, dichloromethane, and butanol showed excellent anti-diabetic anti-cholinesterase activities and inhibited virulence factors regulated by quorum sensing (QS). Anti-oxidants increased in solvent extracts (DCM and butanol) compared to aqueous extracts. Results of scanning electron microscope (SEM) and Fourier Transmission Infrared (FTIR) indicated damage to the cell membrane of S. aureus by the formation of pits and breakage in functional groups exposed to the extracts of butanol and dichloromethane compared to aqueous extracts. The above results confirmed that C. esculentus can be an alternative medicine for treating diseases.

2.
FASEB J ; 38(14): e23811, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031505

RESUMEN

Since the migrasome concept was first proposed in 2015, extensive research has been conducted on these novel organelles, which grow on retracted fibers at the posterior end of migrating cells. Recently, molecular markers, biological functions, and clinical values based on the initial formation mechanism of migrasomes have emerged. Additionally, researchers are recognizing the significant role that migrasomes play in the pathological and diagnostic processes of clinical diseases. In this review, we summarize recent advances in the biology and clinical application of migrasomes and provide a comprehensive view of the prospective challenges surrounding their clinical application.


Asunto(s)
Movimiento Celular , Orgánulos , Humanos , Orgánulos/metabolismo , Animales
3.
Trends Biochem Sci ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38945731

RESUMEN

Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.

4.
Acta Neuropathol Commun ; 12(1): 102, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907342

RESUMEN

Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.


Asunto(s)
Bencimidazoles , Matriz Extracelular , Células de Schwann , Transducción de Señal , Neoplasias Cutáneas , Humanos , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Bencimidazoles/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Transducción de Señal/efectos de los fármacos , Neurofibroma/genética , Neurofibroma/tratamiento farmacológico , Neurofibroma/metabolismo , Neurofibroma/patología , Femenino , Masculino , RNA-Seq , Persona de Mediana Edad , Adulto , Neurofibromatosis 1/genética , Neurofibromatosis 1/tratamiento farmacológico , Neurofibromatosis 1/patología , Inhibidores de Proteínas Quinasas/farmacología , Transcriptoma/efectos de los fármacos
5.
Adv Sci (Weinh) ; 11(24): e2305760, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38627986

RESUMEN

The ability to precisely control in vitro enzymatic reactions in synthetic cells plays a crucial role in the bottom-up design of artificial cell models that can recapitulate the key cellular features and functions such as metabolism. However, integration of enzymatic reactions has been limited to bulk or microfluidic emulsions without a membrane, lacking the ability to design more sophisticated higher-order artificial cell communities for reconstituting spatiotemporal biological information at multiple length scales. Herein, droplet microfluidics is utilized to synthesize artificial cell-like polymersomes with distinct molecular permeability for spatiotemporal control of enzymatic reactions driven by external signals and fuels. The presence of a competing reverse enzymatic reaction that depletes the active substrates is shown to enable demonstration of fuel-driven formation of sub-microcompartments within polymersomes as well as realization of out-of-equilibrium systems. In addition, the different permeability characteristics of polymersome membranes are exploited to successfully construct a programmable enzymatic reaction network that mimics cellular communication within a heterogeneous cell community through selective molecular transport.


Asunto(s)
Células Artificiales , Polímeros , Células Artificiales/metabolismo , Polímeros/metabolismo , Polímeros/química , Microfluídica/métodos , Enzimas/metabolismo
6.
Curr Top Dev Biol ; 158: 151-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670704

RESUMEN

The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.


Asunto(s)
Homeostasis , Músculo Esquelético , Regeneración , Nicho de Células Madre , Regeneración/fisiología , Humanos , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Animales , Nicho de Células Madre/fisiología , Células Madre/citología , Células Madre/fisiología , Células Madre/metabolismo
7.
Environ Toxicol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622884

RESUMEN

Lung adenocarcinoma (LUAD) generally presents as an immunosuppressive microenvironment. The characteristics of cell-to-cell communication in the LUAD microenvironment has been unclear. In this study, the LUAD bulk RNA-seq data and single-cell RNA-seq data were retrieved from public dataset. Differential expression genes (DEGs) between LUAD tumor and adjacent non-tumor tissues were calculated by limma algorithm, and then detected by PPI, KEGG, and GO analysis. Cell-cell interactions were explored using the single-cell RNA-seq data. Finally, the first 15 CytoHubba genes were used to establish related pathways and these pathways were used to characterize the immune-related ligands and their receptors in LUAD. Our analyses showed that monocytes or macrophages interact with tissue stem cells and NK cells via SPP1 signaling pathway and tissue stem cells interact with T and B cells via CXCL signaling pathway in different states. Hub genes of SPP1 participated in SPP1 signaling pathway, which was negatively correlated with CD4+ T cell and CD8+ T cell. The expression of SPP1 in LUAD tumor tissues was negatively correlated with the prognosis. While CXCL12 participated in CXCL signaling pathway, which was positively correlated with CD4+ T cell and CD8+ T cell. The role of CXCL12 in LUAD tumor tissues exhibits an opposite effect to that of SPP1. This study reveals that tumor-associated monocytes or macrophages may affect tumor progression. Moreover, the SPP1 and CXCL12 may be the critic genes of cell-to-cell communication in LUAD, and targeting these pathways may provide a new molecular mechanism for the treatment of LUAD.

8.
Plant Cell Environ ; 47(8): 2842-2851, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38515255

RESUMEN

Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.


Asunto(s)
Aclimatación , Especies Reactivas de Oxígeno , Transducción de Señal , Estrés Fisiológico , Especies Reactivas de Oxígeno/metabolismo , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
9.
New Phytol ; 243(1): 32-47, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38494438

RESUMEN

Plasmodesmata are plasma membrane-lined connections that join plant cells to their neighbours, establishing an intercellular cytoplasmic continuum through which molecules can travel between cells, tissues, and organs. As plasmodesmata connect almost all cells in plants, their molecular traffic carries information and resources across a range of scales, but dynamic control of plasmodesmal aperture can change the possible domains of molecular exchange under different conditions. Plasmodesmal aperture is controlled by specialised signalling cascades accommodated in spatially discrete membrane and cell wall domains. Thus, the composition of plasmodesmata defines their capacity for molecular trafficking. Further, their shape and density can likewise define trafficking capacity, with the cell walls between different cell types hosting different numbers and forms of plasmodesmata to drive molecular flux in physiologically important directions. The molecular traffic that travels through plasmodesmata ranges from small metabolites through to proteins, and possibly even larger mRNAs. Smaller molecules are transmitted between cells via passive mechanisms but how larger molecules are efficiently trafficked through plasmodesmata remains a key question in plasmodesmal biology. How plasmodesmata are formed, the shape they take, what they are made of, and what passes through them regulate molecular traffic through plants, underpinning a wide range of plant physiology.


Asunto(s)
Plasmodesmos , Plasmodesmos/metabolismo , Transporte Biológico , Plantas/metabolismo , Células Vegetales/metabolismo
10.
New Phytol ; 242(2): 389-391, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38363008
11.
J Cancer Res Clin Oncol ; 150(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168012

RESUMEN

INTRODUCTION: In recent decades, many theories have been proposed about the cause of hereditary diseases such as cancer. However, most studies state genetic and environmental factors as the most important parameters. It has been shown that gene expression data are valuable information about hereditary diseases and their analysis can identify the relationships between these diseases. OBJECTIVE: Identification of damaged genes from various diseases can be done through the discovery of cell-to-cell biological communications. Also, extraction of intercellular communications can identify relationships between different diseases. For example, gene disorders that cause damage to the same cells in both breast and blood cancers. Hence, the purpose is to discover cell-to-cell biological communications in gene expression data. METHODOLOGY: The identification of cell-to-cell biological communications for various cancer diseases has been widely performed by clustering algorithms. However, this field remains open due to the abundance of unprocessed gene expression data. Accordingly, this paper focuses on the development of a semi-supervised ensemble clustering algorithm that can discover relationships between different diseases through the extraction of cell-to-cell biological communications. The proposed clustering framework includes a stratified feature sampling mechanism and a novel similarity metric to deal with high-dimensional data and improve the diversity of primary partitions. RESULTS: The performance of the proposed clustering algorithm is verified with several datasets from the UCI machine learning repository and then applied to the FANTOM5 dataset to extract cell-to-cell biological communications. The used version of this dataset contains 108 cells and 86,427 promoters from 702 samples. The strength of communication between two similar cells from different diseases indicates the relationship of those diseases. Here, the strength of communication is determined by promoter, so we found the highest cell-to-cell biological communication between "basophils" and "ciliary.epithelial.cells" with 62,809 promoters. CONCLUSION: The maximum cell-to-cell biological similarity in each cluster can be used to detect the relationship between different diseases such as cancer.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Algoritmos , Análisis por Conglomerados , Neoplasias/genética , Neoplasias/metabolismo , Aprendizaje Automático , Perfilación de la Expresión Génica/métodos
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 15-24, 2024 Jan 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38229499

RESUMEN

Targeting cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway is a promising strategy for tumor treatment. The pattern recognition receptor cGAS identifies dsDNA and catalyzes the formation of a second messenger 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), activating the downstream interferons and pro-inflammatory cytokines through the adaptor protein STING. Notably, in tumor immune microenvironment, key components of cGAS-STING pathway are transferred among neighboring cells. The intercellular transmission under these contexts serves to sustain and amplify innate immune responses while facilitating the emergence of adaptive immunity. The membrane-based system, including extracellular vesicles transport, phagocytosis and membrane fusion transmit dsDNA, cGAMP and activated STING, enhances the immune surveillance and inflammatory responses. The membrane proteins, including a specific protein channel and intercellular gap junctions, transfer cGAMP and dsDNA, which are crucial to regulate immune responses. The ligand-receptor interactions for interferon transmission amplifies the anti-tumor response. This review elaborates on the regulatory mechanisms of cell-to-cell communications of cGAS-STING pathway in tumor immune microenvironment, explores how these mechanisms modulate immunological processes and discusses potential interventions and immunotherapeutic strategies targeting these signaling cascades.


Asunto(s)
Comunicación Celular , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Citocinas , Interferones
13.
Trends Cell Biol ; 34(1): 48-57, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37380581

RESUMEN

Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.


Asunto(s)
Plantas , Transporte de ARN , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantas/genética , Plantas/metabolismo , Comunicación Celular , Floema/genética , Floema/metabolismo
14.
Comput Struct Biotechnol J ; 23: 77-86, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125297

RESUMEN

Single-cell RNA sequencing (scRNA-seq), which profiles gene expression at the cellular level, has effectively explored cell heterogeneity and reconstructed developmental trajectories. With the increasing research on diseases and biological processes, scRNA-seq datasets are accumulating rapidly, highlighting the urgent need for collecting and processing these data to support comprehensive and effective annotation and analysis. Here, we have developed a comprehensive Single-Cell transcriptome integration database for human and mouse (SCInter, https://bio.liclab.net/SCInter/index.php), which aims to provide a manually curated database that supports the provision of gene expression profiles across various cell types at the sample level. The current version of SCInter includes 115 integrated datasets and 1016 samples, covering nearly 150 tissues/cell lines. It contains 8016,646 cell markers in 457 identified cell types. SCInter enabled comprehensive analysis of cataloged single-cell data encompassing quality control (QC), clustering, cell markers, multi-method cell type automatic annotation, predicting cell differentiation trajectories and so on. At the same time, SCInter provided a user-friendly interface to query, browse, analyze and visualize each integrated dataset and single cell sample, along with comprehensive QC reports and processing results. It will facilitate the identification of cell type in different cell subpopulations and explore developmental trajectories, enhancing the study of cell heterogeneity in the fields of immunology and oncology.

15.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894893

RESUMEN

Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.


Asunto(s)
Hepatopatías , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Células Madre Mesenquimatosas/metabolismo , Homeostasis
16.
EMBO Mol Med ; 15(11): e17570, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37819151

RESUMEN

The crosstalk between cancer and stromal cells plays a critical role in tumor progression. Syntenin is a small scaffold protein involved in the regulation of intercellular communication that is emerging as a target for cancer therapy. Here, we show that certain aggressive forms of acute myeloid leukemia (AML) reduce the expression of syntenin in bone marrow stromal cells (BMSC). Stromal syntenin deficiency, in turn, generates a pro-tumoral microenvironment. From serial transplantations in mice and co-culture experiments, we conclude that syntenin-deficient BMSC stimulate AML aggressiveness by promoting AML cell survival and protein synthesis. This pro-tumoral activity is supported by increased expression of endoglin, a classical marker of BMSC, which in trans stimulates AML translational activity. In short, our study reveals a vicious signaling loop potentially at the heart of AML-stroma crosstalk and unsuspected tumor-suppressive effects of syntenin that need to be considered during systemic targeting of syntenin in cancer therapy.


Asunto(s)
Leucemia Mieloide Aguda , Sinteninas , Animales , Ratones , Sinteninas/genética , Sinteninas/metabolismo , Regulación hacia Abajo , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Células del Estroma/metabolismo , Microambiente Tumoral
17.
Biomedicines ; 11(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37760975

RESUMEN

Human tumors are increasingly being described as a complex "ecosystem", that includes many different cell types, secreted growth factors, extracellular matrix (ECM) components, and microvessels, that altogether create the tumor microenvironment (TME). Within the TME, epithelial cancer cells control the function of surrounding stromal cells and the non-cellular ECM components in an intricate orchestra of signaling networks specifically designed for cancer cells to exploit surrounding cells for their own benefit. Tumor-derived extracellular vesicles (EVs) released into the tumor microenvironment are essential mediators in the reprogramming of surrounding stromal cells, which include cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), and tumor endothelial cells (TECs), which are responsible for the promotion of neo-angiogenesis, immune cell evasion, and invasion which are essential for cancer progression. Perhaps most importantly, tumor-derived EVs play critical roles in the metastatic dissemination of tumor cells through their two-fold role in initiating cancer cell invasion and the establishment of the pre-metastatic niche, both of which are vital for tumor cell migration, homing, and colonization at secondary tumor sites. This review discusses extracellular vesicle trafficking within the tumor microenvironment and pre-metastatic niche formation, focusing on the complex role that EVs play in orchestrating cancer-to-stromal cell communication in order to promote the metastatic dissemination of cancer cells.

18.
Biol Proced Online ; 25(1): 25, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37726652

RESUMEN

BACKGROUND: Exosomes, a special subtype of extracellular vesicles derived from human cells, serve as vital mediators of intercellular communication by transporting diverse bioactive cargos, including proteins and enzymes. However, the underlying mechanisms governing exosome secretion and regulation remain poorly understood. In this study, we employed a dual-reporter system consisting of bioluminescent Gaussia luciferase and fluorescent proteins to investigate the dynamics and regulation of exosome secretion in cultured human cells. RESULTS: Our results demonstrated that the engineered dual-reporters effectively monitored both exosome-mediated and ER-Golgi-mediated secretory pathways in a specific and quantitative manner. Notably, we observed distinct characteristics of exosome-mediated protein secretion, including significantly lower capacity and different dynamics compared to the ER-Golgi pathway. This phenomenon was observed in human kidney 293T cells and liver HepG2 cells, emphasizing the conserved nature of exosome-mediated secretion across cell types. Furthermore, we investigated the impact of brefeldin A (BFA), an inhibitor of ER-to-Golgi membrane trafficking, on protein secretion. Interestingly, BFA inhibited protein secretion via the ER-Golgi pathway while stimulating exosome-mediated protein secretion under same experimental conditions. CONCLUSIONS: Collectively, our study highlights the utility of the dual-reporter system for real-time monitoring and quantitative analysis of protein secretion through conventional ER-Golgi and unconventional exosome pathways. Moreover, our findings unveil distinct features of exosome-mediated protein secretion, shedding light on its differential capacity, dynamics, and regulatory mechanisms compared to ER-Golgi-mediated proteins in human cells.

19.
J Radiat Res ; 64(5): 824-832, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37658690

RESUMEN

We investigated the radiation-quality-dependent bystander cellular effects using heavy-ion microbeams with different ion species. The heavy-ion microbeams were produced in Takasaki Ion Accelerators for Advanced Radiation Application, National Institutes for Quantum Science and Technology. Carbon (12C5+, 220 MeV), neon (20Ne7+, 260 MeV) and argon (40Ar13+, 460 MeV) ions were used as the microbeams, collimating the beam size with a diameter of 20 µm. After 0.5 and 3 h of irradiation, the surviving fractions (SFs) are significantly lower in cells irradiated with carbon ions without a gap-junction inhibitor than those irradiated with the inhibitor. However, the same SFs with no cell killing were found with and without the inhibitor at 24 h. Conversely, no cell-killing effect was observed in argon-ion-irradiated cells at 0.5 and 3 h; however, significantly low SFs were found at 24 h with and without the inhibitor, and the effect was suppressed using vitamin C and not dimethyl sulfoxide. The mutation frequency (MF) in cells irradiated with carbon ions was 8- to 6-fold higher than that in the unirradiated control at 0.5 and 3 h; however, no mutation was observed in cells treated with the gap-junction inhibitor. At 24 h, the MFs induced by each ion source were 3- to 5-fold higher and the same with and without the inhibitor. These findings suggest that the bystander cellular effects depend on the biological endpoints, ion species and time after microbeam irradiations with different pathways.


Asunto(s)
Academias e Institutos , Apoptosis , Argón , Ácido Ascórbico , Carbono
20.
Biology (Basel) ; 12(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37626988

RESUMEN

The movement of proteins through the cell membrane is essential for cell-to-cell communication, which is a process that allows the body's immune system to identify any foreign cells, such as cells from another organism and pathogens; this movement is also essential for protein-to-protein interactions and protein-to-membrane interactions which play a significant role in drug discovery. This paper presents the stochastic nature exhibited by proteins during cell-to-cell communication. We study the movement of proteins through the cell membrane under the influence of an external force F and drag force with drag coefficient γ. We derive the stochastic diffusion equation, which governs the motion of the proteins; we start by describing the random motion exhibited by the proteins in terms of probability using a one-dimensional lattice model; this occurs when proteins move inside the cell membrane and bind with other proteins inside the cell membrane. We then introduce an external force and a drag coefficient into a Brownian motion description of the movement of proteins when they move outside the cell membrane and bind with proteins from other cells; this phenomenon occurs during cell communication when one cell releases messenger proteins to relay information to other cells. This, in turn, allows us to obtain the stochastic diffusion equation by applying Ito^'s Lemma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA