Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
CNS Neurosci Ther ; 30(3): e14697, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38544474

RESUMEN

AIMS: Neuroinflammation and pyroptosis are key mediators of cerebral ischemia/reperfusion (I/R) injury-induced pathogenic cascades. BRCC3, the human homolog of BRCC36, is implicated in neurological disorders and plays a crucial role in neuroinflammation and pyroptosis. However, its effects and potential mechanisms in cerebral I/R injury in mice are unclear. METHODS: Cellular localization of BRCC3 and the interaction between BRCC3 and NLRP6 were assessed. Middle cerebral artery occlusion/reperfusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were established in mice and HT22 cells, respectively, to simulate cerebral I/R injury in vivo and in vitro. RESULTS: BRCC3 protein expression peaked 24 h after MCAO and OGD/R. BRCC3 knockdown reduced the inflammation and pyroptosis caused by cerebral I/R injury and ameliorated neurological deficits in mice after MCAO. The effects of BRCC3 on inflammation and pyroptosis may be mediated by NLRP6 inflammasome activation. Moreover, both BRCC3 and its N- and C-terminals interacted with NLRP6, and both BRCC3 and its terminals reduced NLRP6 ubiquitination. Additionally, BRCC3 affected the interaction between NLRP6 and ASC, which may be related to inflammasome activation. CONCLUSION: BRCC3 shows promise as a novel target to enhance neurological recovery and attenuate the inflammatory responses and pyroptosis caused by NLRP6 activation in cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Humanos , Ratones , Isquemia Encefálica/metabolismo , Enzimas Desubicuitinizantes , Infarto de la Arteria Cerebral Media/patología , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Daño por Reperfusión/metabolismo
2.
Gene ; 906: 148262, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346456

RESUMEN

OBJECTIVES: This study aims to investigate the impact of mesenchymal stem cell (MSC)-derived exosomes (Exo) on cerebral ischemia and reperfusion (I/R) injury, along with the underlying mechanism. METHODS: An animal model of cerebral ischemia was induced using middle cerebral artery occlusion (MCAO), and a cell model utilizing Neuro-2a cells was established through oxygen-glucose deprivation/reoxygenation (OGD/R). Exosomes isolated from mouse MSCs were administered to mice or used to stimulate Neuro-2a cells. Exosomes from MSCs transfected with miR-NC, miR-486-5p mimics, miR-486-5p inhibitor, or phosphatase and tensin homolog (PTEN) short hairpin RNAs (sh-PTEN) were employed to stimulate Neuro-2a cells. The regulatory axis of miR-486-5p and PTEN was confirmed through rescue experiments. RESULTS: Exo-miR-486-5p mimics alleviated cerebral I/R injury, improving neurological deficits and reducing the infarct ratio. Furthermore, Exo-miR-486-5p mimics attenuated OGD/R-induced defects in cell viability and inhibited apoptosis in Neuro-2a cells. These mimics also reduced levels of lactate dehydrogenase (LDH) and malondialdehyde (MDA) while enhancing superoxide dismutase (SOD) activity, both in brain tissue homogenates of mice and cell supernatants. Mechanistically, PTEN was identified as a target of miR-486-5p, and the downregulation of PTEN notably elevated Exo-miR-486-inhibitor-induced reductions in cell viability while mitigating cell apoptosis. CONCLUSION: The results of this study demonstrate the potential of exosomes derived from MSCs to protect against cerebral I/R injury via the miR-486-5p and PTEN axis.


Asunto(s)
Isquemia Encefálica , Exosomas , MicroARNs , Daño por Reperfusión , Animales , Exosomas/genética , MicroARNs/genética , Daño por Reperfusión/genética , Isquemia Encefálica/genética , Apoptosis , Reperfusión
3.
Neurochem Res ; 49(1): 85-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37610605

RESUMEN

N6-Methyladenosine (m6A) RNA methylation involves in regulating the initiation, progression and aggravation of cerebral ischemia-reperfusion (I/R) injury, however, the detailed functions and mechanisms by which m6A drives cerebral I/R injury are not fully understood. This study found that methyltransferase-like 3 (METTL3) m6A-dependently regulated cerebral I/R injury trough regulating a novel LncRNA ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α axis. Specifically, the middle cerebral artery occlusion (MCAO)/reperfusion mice models and glucose deprivation (OGD)/reoxygenation (RX) astrocyte cell models were respectively established, and we verified that METTL3, ABHD11-AS1 and HIF1AN were upregulated, whereas miR-1301-3p and HIF-1α were downregulated in both MCAO/reperfusion mice tissues and OGD/RX astrocytes. Mechanical experiments confirmed that METTL3 m6A dependently increased stability and expression levels of ABHD11-AS1, and elevated ABHD11-AS1 sponged miR-1301-3p to upregulate HIF1AN, resulting in the downregulation of HIF-1α. Moreover, silencing of METTL3 rescued MCAO/reperfusion and OGD/RX-induced oxidative stress-associated cell apoptosis and cell cycle arrest in both mice brain tissues in vivo and the mouse primary astrocytes in vitro, which were abrogated by overexpressing ABHD11-AS1 and downregulating miR-1301-3p. Taken together, our study firstly reported a novel METTL3/m6A/ ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α signaling cascade in regulating the progression of cerebral I/R injury, and future work will focus on investigating whether the above genes can be used as biomarkers for the treatment of cerebral I/R injury by performing clinical studies.


Asunto(s)
MicroARNs , Daño por Reperfusión , Ratones , Animales , MicroARNs/metabolismo , Proyectos Piloto , Metilación de ARN , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media , Apoptosis
4.
Chem Biol Interact ; 386: 110779, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37879595

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic strategy for cerebral ischemia/reperfusion (I/R) injury; however, the clinical outcome is barely satisfactory and demands further improvement. The present study aimed to investigate whether preconditioning of BMSCs by recombinant human growth differentiation factor 7 (rhGDF7) could enhance its therapeutic capacity against cerebral I/R injury. Mouse BMSCs and primary neurons were co-cultured and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation. To investigate the role of exosomal microRNA-369-3p (miR-369-3p), inhibitors, RNAi and the miR-369-3p antagomir were used. Meanwhile, mice were intravenously injected with rhGDF7-preconditioned BMSCs and then received cerebral I/R surgery. Markers of inflammation, oxidative stress and neural damage were evaluated. To inhibit AMP-activated protein kinase (AMPK), compound C was used in vivo and in vitro. Compared with cell-free transwell or vehicle-preconditioned BMSCs, rhGDF7-preconditioned BMSCs significantly prevented OGD/R-induced inflammation, oxidative stress and neural damage in vitro. Meanwhile, rhGDF7-preconditioned BMSCs could prevent I/R-induced cerebral inflammation and oxidative stress in vivo. Mechanistically, rhGDF7 preconditioning significantly increased exosomal miR-369-3p expression in BMSCs and then transferred exosomal miR-369-3p to primary neurons, where it bound to phosphodiesterase 4 D (Pde4d) 3'-UTR and downregulated PDE4D expression, thereby preventing I/R-induced inflammation, oxidative stress and neural damage through activating AMPK pathway. Our study identify GDF7 pretreatment as a promising adjuvant reagent to improve the therapeutic potency of BMSCs for cerebral I/R injury and ischemic stroke.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Daño por Reperfusión , Ratones , Humanos , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/fisiología
5.
Chem Biol Interact ; 384: 110723, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741536

RESUMEN

Stroke remains the main leading cause of death and disabilities worldwide, with diabetes mellitus being a significant independent risk factor for it. Metformin, as an efficient hypoglycemic drug in treating type 2 diabetes, has been reported to alleviate the risk of diabetes-related stroke. However, its underlying mechanisms remain unclear. This study aimed to investigate the role of mitophagy and its regulatory pathway in the neuroprotective mechanism of metformin against cerebral ischemia/reperfusion (I/R) injury aggravated by hyperglycemia. A hyperglycemic cerebral I/R animal model and a high glucose cultured oxygen-glucose deprivation/reperfusion (OGD/R) cell model were used in the experiment. The indexes of brain injury, cell activity, mitochondrial morphology and function, mitophagy, mitochondrial pathway apoptosis and the AMPK pathway were observed. In diabetic rats, metformin treatment decreased cerebral infarction volume and neuronal apoptosis, and improved neurological symptoms following I/R injury. Additionally, metformin induced activation of the AMPK/ULK1/PINK1/Parkin mitophagy pathway to have neuroprotective effects. In vitro, high glucose culture and OGD/R treatment impaired mitochondrial morphology and function, mitochondrial membrane potential, and induced apoptosis. However, metformin activated AMPK/ULK1/PINK1/Parkin mitophagy pathway, normalized mitochondrial injury. This protection was reversed by autophagy inhibitor 3-methyladenine (3MA) and AMPK inhibitor compound C. In conclusion, our present study validates the potential mechanism of metformin in alleviating hyperglycemia aggravated cerebral I/R injury by the activation of AMPK/ULK1/PINK1/Parkin mitophagy pathway.

6.
Int J Biol Sci ; 19(13): 4327-4339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705748

RESUMEN

Sirtuin-3 (Sirt3) deacetylates several mitochondrial proteins implicated into cerebral ischemia/reperfusion (I/R) injury. The mitochondrial unfolded protein response (UPRmt) favors mitochondrial proteostasis during various stressors. Here, we used Sirt3 transgenic mice and a transient middle cerebral artery occlusion model to evaluate the molecular basis of Sirt3 on the UPRmt during brain post-ischemic dysfunction. The present study illustrated that Sirt3 abundance was suppressed in the brain after brain ischemic abnormalities. Overexpression of Sirt3 in vivo suppressed the infarction size and attenuated neuroinflammation after brain I/R injury. Sirt3 overexpression restored neural viability by reducing mitochondrial ROS synthesis, maintaining the mitochondrial potential and improving mitochondrial adenosine triphosphate synthesis. Sirt3 overexpression protected neuronal mitochondria against brain post-ischemic malfunction via eliciting the UPRmt by the forkhead box O3 (Foxo3)/sphingosine kinase 1 (Sphk1) pathway. Inhibiting either the UPRmt or the Foxo3/Sphk1 pathway relieved the favorable influence of Sirt3 on neural function and mitochondrial behavior. In contrast, Sphk1 overexpression was sufficient to reduce the infarction size, attenuate neuroinflammation, sustain neuronal viability and prevent mitochondrial abnormalities during brain post-ischemia dysfunction. Thus, the UPRmt protects neural viability and mitochondrial homeostasis, and the Sirt3/Foxo3/Sphk1 pathway is a promosing therapeutic candidate for ischemic stroke.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Sirtuina 3 , Animales , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Daño por Reperfusión/genética , Sirtuina 3/genética , Respuesta de Proteína Desplegada/genética
7.
Adv Clin Exp Med ; 32(6): 655-666, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36881362

RESUMEN

BACKGROUND: During ischemic stroke treatment, cerebral ischemia/reperfusion (I/R) injury results in neuronal cell death and neurological dysfunctions in brain. Previous studies indicate that basic helix-loop-helix family member e40 (BHLHE40) exerts protective effects on the pathology of neurogenic diseases. However, the protective function of BHLHE40 in I/R is unclear. OBJECTIVES: This study aimed to explore the expression, role and potential mechanism of BHLHE40 after ischemia. MATERIAL AND METHODS: We established models of I/R injury in rats and of oxygen-glucose deprivation/reoxygenation (OGD/R) in primary hippocampal neurons. Nissl and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to detect neuronal injury and apoptosis. Immunofluorescence was used to detect BHLHE40 expression. Cell viability and cell damage measurements were conducted using Cell Counting Kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) assay. The regulation of BHLHE40 to pleckstrin homology-like domain family A, member 1 (PHLDA1) was assessed using the dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay. RESULTS: Cerebral I/R rats exhibited severe neuronal loss and apoptosis in hippocampal cornu Ammonis 1 (CA1) region, accompanied by downregulated BHLHE40 expression at both mRNA and protein levels, indicating that BHLHE40 may regulate the apoptosis of hippocampal neurons. The function of BHLHE40 in neuronal apoptosis during cerebral I/R was further explored by establishing an OGD/R model in vitro. Low expression of BHLHE40 was also observed in neurons treated with OGD/R. The OGD/R administration inhibited cell viability and enhanced cell apoptosis in hippocampal neurons, whereas BHLHE40 overexpression reversed those changes. Mechanistically, we demonstrated that BHLHE40 could repress PHLDA1 transcription by binding to PHLDA1 promoter. The PHLDA1 is a facilitator of neuronal damage in brain I/R injury and its upregulation reversed the effects caused by BHLHE40 overexpression in vitro. CONCLUSIONS: The transcription factor BHLHE40 may protect against brain I/R injury through repressing cell damage via regulating PHLDA1 transcription. Thus, BHLHE40 may be a candidate gene for further study of molecular or therapeutic targets for I/R.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Apoptosis/genética , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Isquemia Encefálica/genética , Regulación hacia Arriba , Oxígeno/metabolismo , Glucosa
8.
Neuroscience ; 513: 14-27, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549603

RESUMEN

Enriched environment (EE) is effective in preventing cerebral ischemia-reperfusion (I/R) injury. However, little is known about the mechanism underlying the neuroprotection of EE preprocessing. Endoplasmic reticulum (ER) stress has been demonstrated to be extensively involved in I/R injury. We aimed to investigate the potential regulatory mechanism of ER stress in the neuroprotection of pre-ischemic EE. Rats were subjected to middle cerebral artery occlusion (MCAO) or sham surgery after 4 weeks of exposure in standard or enriched environments. We found that EE pretreatment alleviates acute neuronal injury after MCAO, as shown by reduced infarct volume and neurological deficit score. The expression of ER stress-related proteins, markers of autophagy, and apoptosis were detected to investigate the underlying mechanism. Our results showed that pre-ischemic EE inhibited the ER stress, as evidenced by the inactivation of activating transcription factor 6 (ATF6), protein kinase RNA (PKR)-like ER kinase (PERK), and inositol-requiring enzyme 1 (IRE1) pathways. Moreover, the rats reared in EE were detected with lower autophagic activity and apoptosis levels. The decrease in activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and phospho-c-Jun N-terminal kinases (p-JNK) expression suggested EE pretreatment might inhibit autophagy and apoptosis via modulating ER stress-mediated PERK-ATF4-CHOP and IRE1-JNK signal pathways, which provides a new idea for the prevention of the deleterious cerebral and functional consequences of ischemic stroke.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Daño por Reperfusión , Ratas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Apoptosis , Transducción de Señal , Autofagia , Infarto de la Arteria Cerebral Media
9.
Neuroscience ; 503: 95-106, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36067951

RESUMEN

MicroRNAs (miRNAs) are widely acknowledged to play a unique role in cerebrovascular disease. This research investigates the function of microRNAs in ischemic stroke via a middle cerebral artery occlusion (MCAO) model. Four differentially expressed microRNAs in rat brains were identified by bioinformatics analysis, and qRT-PCR showed that miR-423-5p exhibited the highest expression in cerebral ischemia/reperfusion injury in rats, with peak levels observed at 24 hours. After microRNA inhibitors and mimics were administrated in the rat model of MCAO, the neurological scores and brain water content were detected, and triphenyltetrazolium chloride (TTC), Hematoxylin and Eosin (H&E), and Nissl staining were conducted to explore the influence of miR-423-5p on ischemic stroke. Subsequently, western blot, ELISA, MPO, TUNEL and commercial assay kits were applied to assess the influence of miR-423-5p on NLRP3 inflammasome, apoptosis, and oxidative stress levels in ischemic penumbra tissue. The results showed that miR-423-5p knockdown could effectively improve neurological indicators, such as cerebral infarct volume, brain water content, neurological scores, and nerve tissue damage, and inhibit the NLRP3 inflammasome, apoptosis, and oxidative stress. In contrast, the miR-423-5p mimic yielded opposite results. In conclusion, inhibition of miR-423-5p expression could effectively attenuate ischemic stroke and might be considered a promising target for stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Isquemia Encefálica/metabolismo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Hematoxilina/farmacología , Eosina Amarillenta-(YS)/farmacología , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , MicroARNs/metabolismo , Apoptosis , Agua
10.
Front Mol Neurosci ; 15: 847440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600078

RESUMEN

Millions of patients are suffering from ischemic stroke, it is urgent to figure out the pathogenesis of cerebral ischemia-reperfusion (I/R) injury in order to find an effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1ß (IL-1ß) upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome is well-investigated. NLRP3 inflammasomes are complicated protein complexes that are activated by endogenous and exogenous danger signals to participate in the inflammatory response. The assembly and activation of the NLRP3 inflammasome lead to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin (IL)-1ß and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we summarized the assembly and activation of NLRP3 inflammasome; moreover, we also concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3 inflammasome in cerebral I/R injury.

11.
Neurochem Int ; 157: 105341, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35429577

RESUMEN

BACKGROUND: After cerebral ischemia/reperfusion (I/R) injury, activated microglia can be polarized towards different phenotypes (the proinflammatory M1 phenotype or the anti-inflammatory M2 phenotype) to regulate neuroinflammation. Our previous research showed that DJ-1 has anti-inflammatory effects in cerebral I/R. Here, we examined whether the neuroprotective effect of DJ-1 is related to the autophagy-associated Atg5-Atg12-Atg161L1 complex and whether Sirt1 is involved in the influence of DJ-1 by mediating microglial polarization and ameliorating cerebral I/R injury. METHODS: To answer these questions, we adopted the middle cerebral artery occlusion/reperfusion (MCAO/R) model to simulate I/R injury, knocked down the expression of DJ-1 with siRNA, and used the chemical inhibitor EX-527 to inhibit the expression of Sirt1. Related indexes were evaluated by Western blotting, immunoprecipitation and transmission electron microscopy. RESULTS: Interference with DJ-1 promotes the polarization of microglia from the anti-inflammatory phenotype to the proinflammatory phenotype. Addition of a Sirt1 inhibitor following DJ-1 interference enhances the effect of DJ-1 interference on microglial polarization, decreases the level of the Atg5-Atg12-Atg16L1 complex, and inhibits autophagy. CONCLUSION: These results suggest that DJ-1 regulates the polarization of microglia during cerebral I/R injury, possibly by activating the Atg5-Atg12-Atg16L1 complex through Sirt1 to promote autophagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Isquemia Encefálica , Microglía , Proteína Desglicasa DJ-1 , Daño por Reperfusión , Sirtuina 1 , Antiinflamatorios/farmacología , Proteínas Relacionadas con la Autofagia/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Polaridad Celular , Humanos , Microglía/citología , Microglía/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Reperfusión , Daño por Reperfusión/metabolismo , Sirtuina 1/metabolismo
12.
Yonsei Med J ; 63(4): 389-398, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35352891

RESUMEN

PURPOSE: Cerebral ischemia is related to insufficient blood supply and is characterized by abnormal reactive oxygen species (ROS) production and cell apoptosis. Previous studies have revealed a key role for basic helix-loop-helix family member e40 (Bhlhe40) in oxidative stress and cell apoptosis. This study aimed to investigate the roles of miR-494-3p in cerebral ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: A mouse middle cerebral artery occlusion (MCAO/R) model was established to mimic cerebral ischemia in vivo. Brain infarct area was assessed using triphenyl tetrazolium chloride staining. Oxygen-glucose deprivation/reoxygenation (OGD/R) operation was adopted to mimic neuronal injury in vitro. Cell apoptosis was analyzed by flow cytometry. The relationship between miR-494-3p and Bhlhe40 was validated by luciferase reporter and RNA immunoprecipitation assays. RESULTS: Bhlhe40 expression was downregulated both in MCAO/R animal models and OGD/R-induced SH-SY5Y cells. Bhlhe40 overexpression inhibited cell apoptosis and reduced ROS production in SH-SY5Y cells after OGD/R treatment. MiR-494-3p was verified to bind to Bhlhe40 and negatively regulate Bhlhe40 expression. Additionally, cell apoptosis and ROS production in OGD/R-treated SH-SY5Y cells were accelerated by miR-494-3p overexpression. Rescue experiments suggested that Bhlhe40 could reverse the effects of miR-494-3p overexpression on ROS production and cell apoptosis. CONCLUSION: MiR-494-3p exacerbates brain injury and neuronal injury by regulating Bhlhe40 after I/R.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , MicroARNs , Daño por Reperfusión , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Isquemia Encefálica/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Regulación hacia Arriba
13.
J Mol Histol ; 53(2): 357-367, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35067807

RESUMEN

Ischemic stroke is a nervous system disease with high rates of disability and mortality. MicroRNAs have been reported to modulate cerebral ischemia. The current study aimed to study the role of miR-361-3p in cerebral ischemia-reperfusion (I/R) injury. Experimental results revealed that miR-361-3p level was downregulated in a middle cerebral artery occlusion-induced ischemic stroke mouse model and in oxygen-glucose deprivation/reoxygenation-stimulated SH-SY5Y cells. After overexpressing miR-361-3p, the percentage of brain infarct volume and neurobehavioral scores in mice were significantly reduced, and the neuronal apoptosis was inhibited. Moreover, miR-361-3p overexpression could limit the production of reactive oxygen species (ROS). Furthermore, we investigated the underlying molecular mechanisms of miR-361-3p and identified that miR-361-3p combined with NACC1 3'UTR to negatively modulate its expression. In addition, NACC1 interacts with the PINK1/Parkin pathway in neurons. NACC1 overexpression could rescue the impacts of miR-361-3p mimics on cell apoptosis, ROS production and the PINK1/Parkin pathway. In conclusion, miR-361-3p could improve ischemia brain injury by targeting NACC1 through the PINK1/Parkin pathway. Therefore, miR-361-3p may serve as a potential therapeutic target for the brain injury after I/R.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , Daño por Reperfusión , Animales , Apoptosis/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Glucosa , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas , Especies Reactivas de Oxígeno , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/uso terapéutico
14.
Ann Transl Med ; 10(24): 1385, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660614

RESUMEN

Background: Nobiletin (NOB), an active natural flavonoid component of citrus, is used in Traditional Chinese Medicine for its anti-inflammatory activity, but its efficacy in cerebral ischemia/reperfusion (I/R) injury remains unclear. Methods: In a middle cerebral artery occlusion (MCAO) rat model, MCAO rats were administered (Sham group and MCAO model group treated with an equal volume of solvent, NOB group treated with 10 or 20 mg/kg NOB) once a day for 7 days before cerebral ischemia and again after reperfusion, 2,3,5-triphenyltetrazolium chloride (TTC) staining was applied to assess the infarct area. Neurological function was evaluated by the modified neurological severity score and Morris water maze. The levels of inflammatory factors, interleukin 6 (IL-6), interleukin 1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), were examined by enzyme-linked immunosorbent assay (ELISA). Histopathological staining evaluated neuron apoptosis in brain tissue. In an oxygen-glucose deprivation PC12 cell (OGD PC12) model, the proliferation, migration and apoptosis of OGD PC12 cells were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and cell migration assays and flow cytometry. The gene and protein expression levels of Ras homolog gene family, member A (Rho A), ras-related C3 botulinum toxin substrate 1 (Rac 1), Rho-associated kinase 1 (ROCK 1), ROCK 2 in the Rho/ROCK pathway were measured by Real-time PCR (RT-PCR), immunohistochemistry and western blot. Results: In rats with cerebral I/R injury, NOB significantly decreased the infarcted area, neuron apoptosis in brain tissue and expressions of IL-6, IL-1ß, and TNF-α. It also improved neurological deficits in brain tissue and enhanced learning and memory ability. Further, NOB had a protective effect on OGD PC12 cells, increasing proliferation and migration and decreasing apoptosis. The expressions of Rho A, Rac 1, ROCK 1 and ROCK 2 were high in cerebral I/R injury rats, but were downregulated by NOB in I/R injury rats' brain tissue and OGD PC12 cells. Conclusions: Nobiletin had a neuroprotective effect in rats with cerebral I/R injury, and its potential mechanism is decreasing neuron apoptosis by inhibiting the Rho/ROCK signaling pathway. These results suggest NOB is a promising neuroprotective agent for patients with cerebral ischemia.

15.
Neuromolecular Med ; 24(3): 299-310, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34705256

RESUMEN

Previous studies have demonstrated that increased O-linked N-acetylglucosamine (O-GlcNAc) level could promote cell survival following environmental stresses. This study aimed to explore the role of O-GlcNAc transferase (OGT) during cerebral ischemia/reperfusion (I/R) injury. The mouse model with cerebral I/R injury was induced by middle cerebral artery occlusion/reperfusion (MCAO/R). The expression of ogt in brain tissues was detected by qRT-PCR, Western blot, and immunohistochemistry (IHC) staining assay. Neurological deficit was evaluated using a modified scoring system. The infarct volume was assessed by TTC staining assay. Neuronal apoptosis in brain tissues was evaluated by TUNEL staining assay. The level of cleaved caspase-3 in brain tissues was detected by Western blot and IHC staining assay. The expression of critical proteins involved in mitochondrial fission, including OPA1, Mfn1, and Mfn2, as well as Mff and Drp1 was detected by Western blot and IHC, respectively. The expression of ogt during cerebral I/R injury was significantly upregulated. Ogt knockdown significantly increased neurological score and infarct volume in I/R-induced mice. Meanwhile, ogt knockdown significantly enhanced neuronal apoptosis and cleaved caspase-3 level in brain tissues of I/R-induced mice. In addition, ogt knockdown markedly decreased serine 637 phosphorylation level of mitochondrial fission protein dynamin-related protein 1 (Drp1) and promoted Drp1 translocation from the cytosol to the mitochondria. Moreover, the specific Drp1 inhibitor mdivi-1 effectively attenuated ogt knockdown-induced brain injury of I/R-stimulated mice in vivo. Our study revealed that OGT protects against cerebral I/R injury by inhibiting the function of Drp1 in mice, suggesting that ogt may be a potential therapeutic target for cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , N-Acetilglucosaminiltransferasas/metabolismo , Neuronas/metabolismo , Daño por Reperfusión , Animales , Apoptosis , Isquemia Encefálica/metabolismo , Caspasa 3/metabolismo , Dinaminas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Reperfusión , Daño por Reperfusión/metabolismo
16.
Brain Res Bull ; 180: 12-23, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953929

RESUMEN

Studies have found that Platonin has neuroprotective effect, but its molecular mechanism needs further study. We found that at the early stage of cerebral ischemia/reperfusion injury, Platonin treatment significantly reduced cerebral infarct lesions, improved neurological scores, and exerted neuroprotective effects. Our group has shown that NLRP3 inflammasomes activation is required to mediate neuronal injury during cerebral ischemia /reperfusion injury. The brain protective effect of Platonin is related to its ability to effectively regulate autophagy and NLRP3 inflammasomes-derived inflammation. Platonin treatment effectively induced autophagy (LC3II/I, p62) and reduced NLRP3 inflammasomes activation(NLRP3, cleaved-IL-1ß,cleaved-IL-18, cleaved-caspase1). However, 3-MA (15 mg/kg) treatment downregulated the inhibitory effect of Platonin on NLRP3 inflammasomes. We also studied the location of BNIP3 in Platonin-mediated neuroprotection and found that Platonin induced the expression of autophagic protein BNIP3 and enhanced the co-immunoprecipitation of BNIP3 with LC3, and double-labeled immunofluorescence also showed enhanced co-localization of BNIP3 with LC3. Finally, si-BNIP3 transfection attenuated the co localization of BNIP3 with LC3, decreased the autophagy activity to a certain extent and blocked the inhibition of NLRP3 inflammasomes-derived inflammation by Platonin. This study demonstrated that Platonin may play a neuroprotection role in cerebral I / R injury by inhibiting NLRP3 inflammasomes activation through upregulating autophagy via BNIP3 / LC3 pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Proteínas de la Membrana/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Tiazoles/farmacología , Animales , Modelos Animales de Enfermedad , Ratas
17.
Int Immunopharmacol ; 100: 108146, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34537481

RESUMEN

BACKGROUND: Our previous studies demonstrated that autophagy alleviates cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation. 6-Gingerol, a phenolic compound extracted from ginger, was reported to possess potent antiapoptotic and anti-inflammatory activities and is associated with autophagy. However, the effects of 6-Gingerol in cerebral I/R injury have not been elucidated, and whether they involve autophagy-induced NLRP3 inflammasome inhibition remains unclear. METHODS: Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion for 24 h. 6-Gingerol and 3-methyladenine (3-MA) were injected intraperitoneally, and si-TRPV1 was injected via the lateral ventricle. Cerebral infarct volume, brain edema, neurological deficits, HE and Nissl were used to evaluate the morphological and functional changes of brain tissue, respectively. TRPV1, FAF1, autophagy related (LC3II/I, P62, Beclin1), inflammation related (NLRP3, cleaved-caspase-1, caspase-1, cleaved-IL-1ß, IL-1ß, cleaved-IL-18, IL-18) and apoptosis related (Bcl-2, Bax, cleaved-caspase-3) proteins were assessed by Western blot, immunofluorescence staining and coimmunoprecipitation, respectively. Enzyme linked immunosorbent assay (ELISA) was used to evaluate the changes in the expression levels of interleukin-1 (IL-1ß) and interleukin-18(IL-18), respectively. The degree of neuronal apoptosis was evaluated by TUNEL staining. Neuronal ultrastructure was examined by transmission electron microscopy. RESULT: 6-Gingerol treatment significantly reduced cerebral infarct volume, improved brain edema and neurological scores, and reversed brain histomorphological damage after I/R injury. In addition, 6-Gingerol significantly reduced NLRP3 inflammasome-derived inflammation and neuronal apoptosis and upregulated autophagy. The autophagy inhibitor 3-MA rescued the effects of 6-Gingerol on the NLRP3 inflammasome and apoptosis. Moreover, the findings illustrated that 6-Gingerol inhibited autophagy-induced NLRP3 inflammasome activation and apoptosis through the dissociation of TRPV1 from FAF1. CONCLUSION: In brief, 6-Gingerol exerts antiapoptotic and anti-inflammatory effects via TRPV1/FAF1 complex dissociation-mediated autophagy during cerebral I/R injury. Therefore, 6-Gingerol may be an effective drug for the treatment of I/R injury.


Asunto(s)
Apoptosis , Autofagia , Encéfalo , Catecoles , Alcoholes Grasos , Infarto de la Arteria Cerebral Media , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Fármacos Neuroprotectores , Daño por Reperfusión , Canales Catiónicos TRPV , Animales , Masculino , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Edema Encefálico/inmunología , Edema Encefálico/metabolismo , Edema Encefálico/patología , Edema Encefálico/prevención & control , Catecoles/farmacología , Modelos Animales de Enfermedad , Alcoholes Grasos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Inflamasomas/metabolismo , Fármacos Neuroprotectores/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Transducción de Señal , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
18.
Metab Brain Dis ; 36(8): 2461-2472, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34436746

RESUMEN

Cerebral ischemia/reperfusion (I/R) injury remains a leading cause of death and disability. Long noncoding RNAs (lncRNAs) exert key functions in cerebral I/R injury. Here, we sought to elucidate the mechanism underlying the regulation of H19 in cerebral I/R cell injury. An in vitro model of cerebral I/R injury was created using oxygen-glucose deprivation/reoxygenation (OGD/R). The levels of H19, miR-1306-5p and B cell lymphoma-2 (Bcl-2)-like 13 (BCL2L13) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability and apoptosis were determined by the Cell Counting-8 Kit (CCK-8) assay and flow cytometry, respectively. The levels of lactate dehydrogenase (LDH) and cytokines were evaluated by enzyme-linked immunosorbent assays (ELISA). Direct relationships among H19, miR-1306-5p and BCL2L13 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Our data showed that H19 and BCL2L13 were highly expressed in the cerebral I/R injury rats and OGD/R-triggered SK-N-SH and IMR-32 cells. The knockdown of H19 or BLC2L13 alleviated OGD/R-triggered injury in SK-N-SH and IMR-32 cells. Moreover, H19 silencing protected against OGD/R-triggered cell injury by down-regulating BCL2L13. H19 acted as a sponge of miR-1306-5p and BCL2L13 was a direct target of miR-1306-5p. H19 mediated BCL2L13 expression by sequestering miR-1306-5p. Furthermore, miR-1306-5p was a molecular mediator of H19 function. These results suggested that H19 silencing alleviated OGD/R-triggered I/R injury at least partially depending on the regulation of the miR-1306-5p/BCL2L13 axis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Animales , Apoptosis/genética , Glucosa , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Daño por Reperfusión/metabolismo
19.
Neuropsychiatr Dis Treat ; 17: 1231-1242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33958865

RESUMEN

BACKGROUND: MiR-195-5p has been shown to play crucial roles in tumor inhibition, but its biological functions in cerebral ischemia-reperfusion (I/R) injury are unclear. METHODS: To mimic cerebral I/R injury, mice were induced by transient middle cerebral artery occlusion (MCAO). Human brain microvascular endothelial cells (HBMVECs) were treated with oxygen-glucose deprivation (OGD) to mimic I/R injury in vitro. The expression of miR-195-5p and PTEN was detected by qRT-PCR or Western blot. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometer. Cell death was detected using specific lactate dehydrogenase (LDH) cytotoxicity kit. Infarct volume in mice brains was evaluated by TTC staining. Histopathological analysis was performed by HE staining and TUNEL staining. The interaction between miR-195-5p and PTEN was determined by TargetScan and luciferase reporter assay. RESULTS: MiR-195-5p was significantly downregulated and PTEN was upregulated during cerebral I/R injury both in vitro and in vivo. Overexpression of miR-195-5p efficiently enhanced cell viability, while reduced LDH release and apoptotic rate of OGD-treated HBMVECs in vitro. MiR-195-5p could negatively regulate the expression of PTEN by directly binding to its 3'-UTR. Overexpression of PTEN obviously attenuated the protective effect of miR-195-5p mimics on cell viability, LDH release and apoptosis in OGD-treated HBMVECs. Meanwhile, overexpression of miR-195-5p increased the expression levels of p-AKT in OGD-treated HBMVECs, while this effect was reversed by overexpression of PTEN. Moreover, overexpression of miR-195-5p efficiently ameliorated brain injury of mice after MCAO treatment in vivo. CONCLUSION: Overexpression of miR-195-5p ameliorated cerebral I/R injury by regulating the PTEN-AKT signaling pathway, providing a potential therapeutic target for cerebral I/R injury.

20.
Pharmacol Ther ; 225: 107848, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33823204

RESUMEN

Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.


Asunto(s)
Autofagia , Accidente Cerebrovascular Isquémico , Autofagia/efectos de los fármacos , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA