RESUMEN
The global green energy transition has spurred increased lithium exploration and extraction, yet the water quality impacts from lithium mining are understudied. This study investigates the potential water quality impacts from a legacy hard-rock lithium mine through comprehensive geochemical analyses of groundwater, surface waters, ore grade rocks, tailings, and waste rocks from a mine site in North Carolina, USA. The concentrations of regulated contaminants (e.g. As, Pb) in both groundwater and surface water emerging from the mine site were low, below drinking water and ecological standards. Yet Li (up to 46.8 mg/L), Rb (up to 169 µg/L), and Cs (up to 21 µg/L) were elevated relative to local background waters. Leaching experiments of the pegmatite ores, waste rocks, and tailing consistently demonstrate low mobilization of regulated contaminants and high leachability of Li, Rb, and Cs. Leaching experiments also reveal that water-rock interactions of the rocks and solid wastes from the mine site generate alkaline conditions, and that both phosphate and spodumene minerals are primary sources of Li and play a major role in formation of alkaline conditions during early stages of water-rock interactions. Over longer time scales, their direct impact on water quality is decreased. Given the global interest in hard-rock lithium mines, our findings highlight the potential occurrence of Li, Rb, and Cs in water resources adjacent to hard-rock lithium mines.
RESUMEN
Extensive efforts were made to remove radioactive cesium (137Cs) from the environment, with Prussian blue analogs (PBAs) emerging as highly selective and efficient materials for 137Cs removal. However, limited studies systematically compared Cs+ adsorption across different transition metals in PBA. This study investigates the influence of the choice of transition metal ion (Co, Cu, Fe, Mn, Ni, Zn) on Cs+ adsorption mechanisms and efficiency. PBAs were synthesized and characterized based on their specific surface area, ion exchange capacity, lattice parameter, and defect sites (as indicated by water molecule content). Cs+ adsorption mechanisms varied significantly with transition metals. In CoFe and FeFe PBAs, ion exchange with K+ dominated, while CuFe and MnFe PBAs, with more defect sites primarily used ion exchange between H+ and Cs+. NiFe and ZnFe exhibited enhanced Cs+ adsorption under light irradiation, likely due to their light-absorbing properties facilitating a reduction reaction. The Langmuir adsorption isotherm was applied to model the adsorption behavior, confirming that each performance of PBA depends on the transition metal used. These findings suggest that PBAs with various transition metals can efficiently remove 137Cs under diverse environmental conditions by using distinct adsorption mechanisms.
RESUMEN
While the standard of care for anal cancer consists of concurrent chemoradiation, patients with advanced T stages often succumb to local failures. Salvage treatment consists of an abdominoperineal resection (APR). While this is a good surgery to treat the local recurrence, there may be a risk of obtaining a positive margin due to the advanced nature and location of the recurrence. Addressing these high-risk positive margin sites with adjuvant brachytherapy after surgical resection is a good option to deliver a high dose of radiation to the R1 resection site while sparing the adjacent critical organs at risk. Herein, we present a case report of two patients with persistent or recurrent anal cancer who were treated with an APR with placement of a custom Cesium-131 brachytherapy mesh implant.
RESUMEN
The environmental fate of strontium (Sr) and cesium (Cs), as the critical radioactive fission products, have raised significant concerns regarding radioactive waste disposal and environmental protection. The current study investigated the distinction in the binding configurations of Sr2+ and Cs+ on various 2:1 phyllosilicate (illite, vermiculite, and montmorillonite) by combining batch adsorption, sequential extraction, and spectroscopic analyses. The results show that strontium adsorption is strongly influenced by pH as well as ionic strength, while there is no significant variability in strontium adsorption by different types of clay minerals. EXAFS analysis confirms the outer complexation of strontium on the planar sites of the clay minerals, i.e., Sr2+ is surrounded by ~8.0 O atoms, RSr-O ≈ 2.6 Å, and that process is mainly realized by ion exchange. In contrast, Cs+ adsorption was markedly influenced by the variety of clay minerals but less by pH and ionic strength, the presence of humic acid (HA) inhibited Cs+ adsorption. The inner-sphere complexation formed mainly at the frayed edge sites on illite, and interlayer sites on vermiculite and montmorillonite, was the dominant mechanism for Cs+ adsorption. In addition, the collapse of the interlayer space of vermiculite induced by Cs+ adsorption on the interlayer sites was responsible for the more stable and irreversible immobilization. The findings in present work highlighted the significance of prevailed mineral in governing environmental migration risk of radionuclides, the revealed adsorption mechanism and binding configuration of Sr2+ and Cs+ on typical phyllosilicates would be referable in constructing a reliable migration model of Sr2+ and Cs+ in natural media.
RESUMEN
This study investigated the effects of gamma (137Cs, 0-250 Gy) and UV (UV-C, 0-12 h) radiation on growth and biodiesel properties of Botryococcus braunii KMITL. For gamma radiation, maximum biomass (1.37 ± 0.02 g L-1) was achieved with 50 Gy, while a dose of 200 Gy resulted in the highest hydrocarbon content (51.84 ± 0.20%) and yield (0.66 ± 0.01 g L-1). For UV radiation, a 9 h exposure produced the highest biomass (2.45 ± 0.05 g L-1), hydrocarbon content (55.01 ± 1.22%), and yield (1.35 ± 0.04 g L-1). Algae exposed to gamma radiation within the range of 0-150 Gy exhibited C16:0 as the dominant fatty acid methyl ester (FAME), similar to those exposed to UV radiation, while algae exposed to 200-250 Gy displayed C18:1n9t as the dominant FAME. High levels of gamma and UV radiation were observed to lengthen fatty acid chains and increase unsaturated fatty acids. The cetane values of biodiesel from algae exposed to gamma and UV radiation ranged from 64.55 ± 0.14-66.47 ± 0.20 and 59.43 ± 0.04-65.27 ± 0.22, respectively, all meeting standard criteria. Both gamma and UV radiation also improved the saponification value and cold flow properties of the biodiesel. These findings suggest that controlled levels of gamma and UV radiation effectively enhance hydrocarbon yields with significant implications for biofuel production.
Asunto(s)
Biocombustibles , Biomasa , Chlorophyta , Rayos gamma , Hidrocarburos , Microalgas , Rayos Ultravioleta , Chlorophyta/efectos de la radiación , Chlorophyta/metabolismo , Chlorophyta/crecimiento & desarrollo , Hidrocarburos/metabolismo , Microalgas/efectos de la radiación , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Ácidos Grasos/metabolismoRESUMEN
Water dispersible L-glutamic acid (Glu) functionalized cesium lead bromide perovskite quantum dots (CsPbBr3 PQDs), namely CsPbBr3@Glu PQDs were synthesized and used for the fluorescence "turn-off" detection of myoglobin (Myo). The as-prepared CsPbBr3@Glu PQDs exhibited an exceptional photoluminescence quantum yield of 25% and displayed emission peak at 520 nm when excited at 380 nm. Interestingly, the fluorescence "turn-off" analytical approach was designed to detect Myo using CsPbBr3@Glu PQDs as a simple optical probe. The developed probe exhibited a wide linear range (0.1-25 µM) and a detection limit of 42.42 nM for Myo sensing. The CsPbBr3@Glu PQDs-based optical probe provides high ability to determine Myo in serum and plasma samples.
Asunto(s)
Compuestos de Calcio , Cesio , Ácido Glutámico , Plomo , Límite de Detección , Mioglobina , Óxidos , Puntos Cuánticos , Puntos Cuánticos/química , Plomo/química , Plomo/sangre , Plomo/análisis , Mioglobina/sangre , Mioglobina/análisis , Mioglobina/química , Ácido Glutámico/sangre , Ácido Glutámico/química , Ácido Glutámico/análisis , Compuestos de Calcio/química , Cesio/química , Óxidos/química , Humanos , Titanio/química , Biomarcadores/sangre , Biomarcadores/análisis , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Agua/químicaRESUMEN
This review discusses recent advances in the use of alkali-activated materials (AAMs) to host high heat and radiation-emitting cesium (Cs) and strontium (Sr) wastes. It examines the evolution of geopolymerization, mechanical properties, mineralogy, microstructure, and leaching behavior of Cs-and/or Sr-bearing AAMs, considering their chemical interaction with Cs and Sr nuclides and exposure to temperature and gamma radiation induced by Cs and Sr. The literature indicates that Cs and Sr slightly degrade the mechanical properties of AAMs, with Sr having a more pronounced effect. For AAMs with a low SiO2/Al2O3 ratio, decay heat from Cs and Sr can crystallize zeolitic phases, which are beneficial in the short term but detrimental in the long term because of their low stability against gamma radiation. Cs was immobilized via ion exchange within the aluminosilicate phase and Sr mainly by precipitation, but the immobilization of their respective daughter nuclides Ba and Zr was not demonstrated. Gamma radiation exposure does not significantly alter AAM properties, and nitrates in Cs and Sr-bearing wastes reduce gamma-induced water radiolysis. AAMs are promising hosts for Cs and Sr-bearing wastes, but further studies are needed using realistic Cs and Sr waste loading to evaluate the synergistic effects of Cs and Sr chemical behavior, decay heat, and gamma irradiation on the evolution of properties of waste forms, and the ability of AAMs to accommodate daughter nuclides Ba and Zr.
RESUMEN
In order to meet the needs of geologists for the analysis of data characterizing field outcrops (rock sections or formations exposed on the ground surface), this study developed a field digital outcrop visualization platform based on Cesium (a 3D geospatial visualization technology) digital outcrop characterization technology. The platform was developed based on WebGL (a protocol for rendering interactions on web pages), which overcame the shortcomings of traditional software in terms of visualization, cross-device, cross-platform, and ease of use. Firstly, UAV inclined photography is used for data collection, which transforms a large amount of geological data into an intuitive 3D geological model, while the visualization platform provides rich measurement and mapping tools for the identified features, which more intuitively displays the outcrop information, helps geological explorers to understand the geological conditions in the field more quickly and comprehensively, and improves the analysis efficiency and ease-of-use of outcrop characterization data. Combined with the improved VGG19 (a deep convolutional neural network architecture) algorithm model, it has excellent performance in dealing with the fine texture and complex structure of rocks, which significantly improves the accuracy of lithology identification. The synergistic application of this technology provides geologists with a faster and more comprehensive means to understand the geological conditions in the field. The reliability of combining the Cesium digital outcrop characterization technology with the VGG19 lithology identification algorithm in geological exploration is verified through case studies. The synergistic application of this technology will greatly enhance the efficiency and ease of analysis of outcrop characterization in the field, and provide new perspectives for future research in geosciences.
RESUMEN
Background: GammaTile (GT), a form of brachytherapy utilizing cesium-131 seeds in a bioresorbable collagen tile, has gained popularity for the treatment of recurrent intracranial tumors and more recently for newly diagnosed metastases. This study reports early experience utilizing GT in upfront brain metastases with a focus on clinical applications and perioperative safety. Methods: The STaRT Registry (NCT04427384) was queried for all patients receiving GT for upfront metastases from August 2021 to August 2023. Data regarding patient demographics, procedure details, and adverse events (AEs) were extracted and analyzed. Results: Twenty-eight patients, median age 65 years (range 28-81), with 30 treated metastases were reported from 6 institutions. Patients had 2.8 metastases on average (range 1-15) at the time of surgery; however, most patients had a single metastasis (60.7%). The mean diameter of treated metastases was 3.4 cm (range 1.5-4.7). A median of 4.0 tiles (range 1-10) were used per tumor. The median follow-up was 3.0 months (range 1.0-11.2) with 6 attributed AEs (21.4%), including 1 gradeâ ≥â 3 (infection). In the immediate postoperative period (<14 days), 2 patients reported pain or headache, and 1 reported facial edema. One patient developed seizures on postoperative day 8 requiring medication. At 1-month follow-up, there was 1 superficial wound infection, in a previously colonized patient, requiring surgical intervention without explantation of tiles. At 3-month follow-up, 1 patient reported facial pain not requiring treatment. There were no symptomatic hematomas. Conclusions: GT demonstrates a favorable safety profile in upfront brain metastases with a 3.6% rate of serious AEs (gradeâ ≥â 3) within 90 days of the procedure.
RESUMEN
Cesium (Cs) is a toxic alkaline metal affecting human health. Plant high-affinity K transporters (HAKs) involved in Cs uptake and transport have been identified in several plants. However, the molecular regulatory mechanisms of Cs uptake and transport, and homeostasis between Cs and K by HAKs remain unknown. In this study, TaHAK1 was overexpressed in rice (TaHAK1-OEs) to evaluate Cs absorption capacity and the Cs and K homeostasis mechanisms. Results showed that TaHAK1 promoted seedling growth by fixing Cs in the root cell wall and modifying Cs distribution. Transcriptome and bioinformatics analyses revealed that 37,828 differentially expressed genes (DEGs) were significantly induced in TaHAK1-OEs, of which the pathways involved in cell wall biosynthesis and ion absorption transport were notably affected including genes, XTHs, CSLEs, HAKs, and ABCs. Moreover, under Cs-contaminated soil, TaHAK1-OEs exhibited improved Cs tolerance by decreasing Cs accumulation and increasing K content in different tissues, particularly in the grains, indicating that TaHAK1 acts as a candidate gene for screening genetic modification of Cs phytoremediation and developing low-Cs-accumulation rice varieties. This study provides new insights into the uptake and translocation of Cs and the homeostasis of Cs and K in plants, and also supplies new strategy to improve phytoremediation efficiency.
RESUMEN
The timely identification of areas where man-made radionuclides migrate through water streams is highly important for the territory of the former Semipalatinsk Test Site since the aquatic environment is currently a source of secondary contamination of environment. This article presents research findings on radioactively contaminated Lake Kishkensor located at the Semipalatinsk Test Site territory. As a result of this research, a new locally contaminated spot was discovered in the vicinity of the "Balapan" test site. Lake Kishkensor was found to be contaminated with man-made 3H and 90Sr. The 3H activity concentration in surface waters reached 430 kBq/L, and the concentration of 90Sr reached 100 Bq/L. In the sediments, the 3H activity concentration reached 700 kBq/kg, while that of 90Sr and 239+240Pu reached 310 Bq/kg and 250 Bq/kg, respectively. Ground water was found to be a source of surface water and sediment contamination. The monitoring results showed that the contamination level of the lake largely depended on the season and the inflow of contaminated ground water.
Asunto(s)
Lagos , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Lagos/química , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Agua/análisis , Radioisótopos de Estroncio/análisis , Explosiones , Polonia , Sedimentos Geológicos/química , Armas NuclearesRESUMEN
137Cs diffused into the environment due to a nuclear power plant accident has caused serious problems for safe crop production. In plants, Cs+ is similar in its ionic form to K+. Cs+ is absorbed and transported mainly by the K+ transport mechanism. However, the full picture of the genes contributing to Cs+ transport and the transport mechanism of rice is still unclear. This study focused on OsHKT2;1, a candidate Cs+ transporter under low K+ conditions. To verify the ability of OsHKT2;1 to transport Cs+, the OsHKT2;1 mutant (hkt2;1) was grown in a 137Cs-contaminated paddy field in Fukushima. The 137Cs concentration in hkt2;1 aboveground was higher than in the wild type (WT), and the K concentration in these samples did not change between WT and hkt2;1, whereas the Na concentration was lower in hkt2;1. Uptake experiments with radioactive tracers (22Na+, 43K+, and 137Cs+) in hydroponic systems with different elemental compositions showed a negative correlation between Na+ and Cs+ accumulation in rice shoot cultivated under low K+ conditions. These results indicated that OsHKT2;1 does not directly contribute to Cs+ uptake but is an important factor in regulating Cs+ translocation by controlling Na+ accumulation. This indicates the possibility of controlling rice Cs content by regulating the Na+ environment during cultivation.
RESUMEN
With the development of nuclear industry, radioactive elements such as 137Cs put a threat on the water environment. It is a challenging task to remove the Cs+ in the nuclear wastewater. In the current study, we prepared a new Cs+-adsorbing material by introducing sulfhydryl group onto the surface of hollow mesoporous silica microspheres, then oxidizing the sulfhydryl group to sulfonic acid group. The obtained HMSS-SO3H material had an excellent adsorption capacity for Cs+ in the aqueous solution, with an adsorption capacity of 51.53 mg g-1 in 30 min. Characterization approaches, such as FT-IR and EDS, were used to confirm the result of modification. Adsorption experiments were carried out under. The influence of various parameters on the adsorption process was investigated under the conditions of changing pH, temperature, and time. The effect of competitive ions was also explored. The results indicated that the adsorption process followed the pseudo-second-order model and the main adsorption mechanisms are electrostatic interaction and coordination. The material had a best adsorption performance at a neutral pH. The adsorption process could well-fit the Langmuir's model, with a theoretical maximum adsorption capacity of 81.31 mg g-1. And the adsorption capacity was slightly affected by competing ions such as Mg2+ and Ca2+. The results indicate that the HMSS-SO3H prepared in this study is a promising adsorbent for Cs+, with the advantages of high adsorption capacity, fast adsorption rate and high selectivity.
RESUMEN
The wide bandgap CsPbI2Br perovskite materials have attracted significant attention due to their high thermal stability and compatibility with narrow bandgap materials in tandem devices. The performance of perovskite solar cells (PSCs) is highly dependent on the quality of the perovskite layer, which is governed by the crystallization process during solution processing. However, the crystallization dynamics of CsPbI2Br thin films remain less explored compared to conventional organic-inorganic perovskites. Achieving high-quality CsPbI2Br films with uniform morphology and large perovskite grains remains challenging with standard solution techniques. This study applies the ionic liquid (IL) [EMIM]+[PF6]- as an additive within the bulk CsPbI2Br absorber layer. Within our experimental regime, [EMIM]+[PF6]- accelerates the crystallization process while promoting the formation of large perovskite grains, a feature not commonly observed in previous studies. Our experimental results suggest that the IL acts as heterogeneous nucleation sites, and varying IL incorporation amount significantly impacts the morphology of CsPbI2Br perovskite films. Consistent UV-vis and photoluminescence (PL) red-shifts are observed in the IL-incorporated CsPbI2Br films, with X-ray diffraction (XRD) data projecting an influence on the perovskite crystal structure. These findings provide new insights into the role of ILs in controlling crystallization and morphology that have been minimally discussed in the literature. The incorporation of an optimized amount of [EMIM]+[PF6]- promotes the formation of highly crystalline perovskite thin films with excellent morphology, reducing defect density, enhancing carrier transport, and yielding large grain sizes. As a result, PSCs fabricated with [EMIM]+[PF6]- achieved a power conversion efficiency (PCE) of 17.11% (stabilized at 15.87%) and an open-circuit voltage (VOC) of 1.39 V, along with improved stability compared to control devices. This work provides a straightforward approach for producing high-quality CsPbI2Br thin films with high reproducibility, contributing valuable advancements to Cs-based PSCs.
RESUMEN
Radioactive Cs+ and I- ions are major components of nuclear wastewater, typically existing as counter ions. Due to their high water solubility and mobility, these ions can spread through contaminated water and soil into ecosystems, necessitating continuous removal and management. In this study, we synthesized a reusable bifunctional Ni@Pt/K2NiFe(CN)6 composite that can simultaneously remove radioactive Cs+ and I- ions and, for the first time, enable their separate recovery in aqueous solutions. In this material, K2NiFe(CN)6 acted as an electrochemically switched ion exchanger, controlling the adsorption/desorption of Cs+, while Pt enabled the spontaneous adsorption and electrochemical desorption of I-, and the magnetic Ni core allowed for efficient adsorbent recovery. The adsorption isotherms of both Cs+ and I- were best fitted using the Langmuir model, and the corresponding adsorption capacities were comparable to those of conventional adsorbents used for the separate removal of Cs+ and I-. Furthermore, the composite demonstrated stability over 100 sorption cycles, maintaining high recovery efficiencies of 97.9 % for Cs+ and 99.7 % for I-, thereby proving its reusability. Thus, the developed composite holds great promise for radioactive wastewater treatment and environmental restoration.
RESUMEN
Cesium-based two-dimensional (2D) perovskites with attractive phase and environmental stability have broad application prospects in single-junction and tandem perovskite solar cells (PSCs). However, the severe nonradiative recombination and significant energy losses due to disordered phase orientations and phase distributions greatly hinder the carrier transport performance of cesium-based 2D PSCs and severely limit their photovoltaic performance. Here, we employ an asymmetric chiral spacer cation source, (R)-α-phenylethylamine acrylate (R-α-PEAAA), to prepare high-quality 2D cesium-based films with uniform phase distribution and high out-of-plane orientation by air processing, resulting in efficient carrier transport. More importantly, the asymmetric chiral spacer R-α-PEA has a stronger dipole moment than its isomer (PEA), which can regulate the dielectric properties of cesium-based 2D perovskites and promote charge dissociation. In addition, the chiral R-α-PEA can optimize the morphology and out-of-plane orientation of perovskite films, reduce trap density and nonradiative recombination loss, and optimize energy level alignment, thus enhancing carrier transport. As a result, cesium-based 2D PSCs (R-α-PEA2Cs4Pb5I16, n = 5) achieved a record power conversion efficiency of 19.71% and the unencapsulated device maintained over 90% efficiency after 1500 h of continuous light exposure and ambient storage (35 ± 5% relative humidity). This study provides an idea for the development of chiral 2D perovskite with efficient charge carrier transport toward efficient and stable cesium-based 2D PSCs.
RESUMEN
To quantitatively investigate the effects of chronic low-dose internal exposure to Cesium-137 on DNA damage, carcinogenicity, and offspring over multiple generations. The potential genetic risk in humans was predicted based on next-generation murine mutation rates to confirm the reasonableness of the current Cesium-137 dose limits for food. Cesium-137 (100 Bq/mL) was provided in drinking water to A/J mice, facilitating chronic, low-dose, low-dose-rate internal exposure through sibling mating over 25 generations (G25). The A/J mice were compared with a control strain with the same origin ancestry (no Cesium-137 water) for DNA double-strand breaks (DSBs), oxidative stress, chromosome aberrations, micronucleus test results, whole genome analysis, carcinogenicity, tumor growth rate, and immune competence. Compared to the control group, DNA DSBs and oxidative stress were significantly increased in the Cesium-137 group. However, no significant differences were observed between the groups regarding chromosome aberration, micronuclei, or the whole genome sequence mutation analysis. Although the carcinogenic rate did not differ between the groups, the rate of tumor growth was significantly suppressed in the Cesium-137 group. The anti-tumor cytokine trend in the Cesium-137 group likely contributed to this effect. No pathological or genetic effects were observed in the offspring of mice drinking water containing 100 Bq/mL Cesium-137 after G25. The contribution of low dose-rate radiation to carcinogenicity was not additive but growth-inhibitory. Although the negative data are not conclusive, these findings are deemed highly reliable.
Asunto(s)
Radioisótopos de Cesio , Aberraciones Cromosómicas , Relación Dosis-Respuesta en la Radiación , Estrés Oxidativo , Animales , Radioisótopos de Cesio/toxicidad , Radioisótopos de Cesio/efectos adversos , Ratones , Femenino , Masculino , Estrés Oxidativo/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Aberraciones Cromosómicas/efectos de la radiación , Dosis de Radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADNRESUMEN
In this study, acid-modified activated carbon fibers (ACF-Ps) were synthesized by phosphorylation. Three different types of ACF-based adsorbents functionalized with PO43-, P2O74-, or P3O105- ions, namely, ACF-P1, ACF-P2, and ACF-P3, were prepared by phosphorylating ACF with trisodium phosphate (Na3PO4), sodium dihydrogen pyrophosphate (Na2H2P2O5), and sodium tripolyphosphate (Na5P3O10), respectively, and utilized as adsorbents to remove cesium ions (Cs+) from aqueous solutions. Among the tested adsorbents, ACF-P3 exhibited the highest Cs+ adsorption capacity of 37.59 mg g-1 at 25 °C and pH 7 which is higher than that of ACF (5.634 mg g-1), ACF-P1 (19.38 mg g-1), and ACF-P2 (30.12 mg g-1) under the same experimental conditions. More importantly, the Cs+ removal efficiencies of ACF-P3 (82.90%), ACF-P2 (66.2%), ACF-P1 (34.2%) were 29.3-, 23.4-, and 12.11-fold higher than that of un-treated ACF (2.83%). The results suggested that the phosphorylation with Na5P3O10 is highly suitable for Cs+ adsorption which effectively functionalizes ACF with a greater number of phosphate functional groups. Adsorption and kinetic data well-fitted the Langmuir isotherm and pseudo-second-order model, respectively, which indicated the monolayer adsorption of Cs+ onto ACF-P1, ACF-P2, and ACF-P3 which were largely controlled by chemisorption. Overall, phosphoric acids containing different phosphate-based polyanions (PO43-, P2O74-, or P3O105-) enriched -OH and/or -COOH surface functional groups of ACF in addition to P-containing surface groups (PO, C-P-O, C-O-P, and P-O) and facilitated the Cs+ adsorption through surface complexation and electrostatic interactions.
Asunto(s)
Cesio , Ácidos Fosfóricos , Contaminantes Químicos del Agua , Ácidos Fosfóricos/química , Adsorción , Cesio/química , Contaminantes Químicos del Agua/química , Fibra de Carbono/química , Carbón Orgánico/química , Cinética , Iones/química , Purificación del Agua/métodos , Concentración de Iones de HidrógenoRESUMEN
The Saltstone Disposal Facility on the Savannah River Site in South Carolina disposes of Low-Level Waste in a reducing-grout waste form. Reducing grout is presently being evaluated as a subsurface disposal waste form at several other locations in the United States, as well as in Europe and Asia. The objective of this study was to collect core samples directly from the Saltstone Disposal Facility and measure desorption distribution coefficients (Kd; radionuclide concentration ratio of saltstone:liquid; (Bq/kg)/Bq/L)) and desorption apparent solubility values (ksp; radionuclide aqueous concentration (moles/L)). An important attribute of this study was that these tests were conducted with actual aged, grout waste form materials, not small-volume simulants prepared in a laboratory. The reducing grout is comprised of blast furnace slag, Class F fly ash, ordinary portland cement, and a radioactive salt waste solution generated during nuclear processing. The grout sample used in this study underwent hydrolyzation in the disposal facility for 30 months prior to measuring radionuclide leaching. Leaching experiments were conducted either in an inert (no oxygen) atmosphere to simulate conditions within the saltstone monolith prior to aging (becoming oxidized) or they were exposed to atmosphere conditions to simulate conditions of an aged saltstone. Importantly, these experiments were designed not to be diffusion limited, that is, the saltstone was ground finely and the suspensions were under constant agitation during the equilibration period. Under oxidized conditions, measured Tc Kd values were 10 mL/g, which was appreciably greater than the historical best-estimate value of 0.8 mL/g. This difference is likely the result of a fraction of the Tc remaining in the less soluble Tc(IV) form, even after extensive oxidation during the experiment. Under oxidized and reducing conditions, the measured Ba and Sr (both divalent alkaline earth metals) Kd value were more than an order of magnitude greater than historical best-estimate values of 100 mL/g. The unexpectedly high Ba and Sr Kd values were attributed to these radionuclides having sufficient time to age (form strong bonds) in the sulfur-rich saltstone sample. Apparent ksp values under reducing conditions were 10-9 mol/L Tc and 10-13 mol/L Pu, consistent with values measured with surrogate materials. Measured apparent Ba, Sr, and Th ksp values were significantly greater than historical best-estimates. The implications of the generally greater Kd values and lower ksp values in these measurements is that these cementitious waste forms have greater radionuclide retention than was previously estimated based on laboratory studies using surrogate materials. This work represents the first leaching study performed with an actual aged, reducing-grout sample and as such provides an important comparison to studies conducted with surrogate materials, and provides high pedigree data for other programs around the world evaluating reducing grouts as a wasteform for subsurface nuclear waste disposal.
Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Residuos Radiactivos/análisis , Monitoreo de Radiación/métodos , South Carolina , Eliminación de Residuos/métodos , Instalaciones de Eliminación de Residuos , Radioisótopos/análisisRESUMEN
Timely decontamination will reduce the consequences of a radiological contamination event. For this purpose, pressure washing can be rapidly deployed, but its effectiveness will change if the interactions between the surface and radionuclides changes as the contamination "ages" under the influence of time and precipitation. While effects of this aging have been reported for dissolved cesium, they have not been studied for radionuclides present as particulate, e.g., fallout. This work studied the effects of aging on decontamination with low (<280 kPa/40 psi) and mild (14,000 kPa/2000 psi) pressure washing, on concrete contaminated with surrogate fallout consisting of soluble Cs-137, 0.5 µm silica particles, and 2 µm silica particles. The samples were aged up to 59 days (time between contamination and decontamination) with and without simulated precipitation. The percent removal following decontamination of the soluble cesium decreased over the first ten days of aging until the removals were less than 10 % for both low and mild pressure washing. The particle decontamination was independent of aging time but decontaminating via mild pressure washing (>80 % particle removal) significantly outperformed decontaminating by low pressure washing by flowing solution across (parallel to) the contaminated surface (<25 % particle removal). The observed changes in decontamination efficacy are explained via measurements of the penetration depth of contaminants. For soluble cesium, the results compared favorably with prior studies and theoretical treatment of cesium penetration, and they yielded additional insight into the effect of washing pressures on decontamination. There are no comparable studies for particulate contamination, so this study resulted in several novel observations which are operationally important for timely decontamination of surfaces following a radiological incident. It also suggests an evidence-based pressure washing procedure for timely decontamination of soluble and insoluble radionuclides which can be used throughout the emergency phase and into the early recovery phase.