Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pediatr Pulmonol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115449

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia. Most cases are inherited recessively, due to variants in >50 genes that result in abnormal or absent motile cilia. This leads to chronic upper and lower airway disease, subfertility, and laterality defects. Given overlapping clinical features and genetic heterogeneity, diagnosis can be difficult and often occurs late. Of those tested an estimated 30% of genetically screened PCD patients still lack a molecular diagnosis. A molecular diagnosis allows for appropriate clinical management including prediction of phenotypic features correlated to genotype. Here, we aimed to identify how readily a genetic diagnosis could be made using whole genome sequencing (WGS) to facilitate identification of pathogenic variants in known genes as well as novel PCD candidate genes. METHODS: WGS was used to screen for pathogenic variants in eight patients with PCD. RESULTS: 7/8 cases had homozygous or biallelic variants in DNAH5, DNAAF4 or DNAH11 classified as pathogenic or likely pathogenic. Three identified variants were deletions, ranging from 3 to 13 kb, for which WGS identified precise breakpoints, permitting confirmation by Sanger sequencing. WGS yielded identification of a de novo variant in a novel PCD gene TUBB4B. CONCLUSION: Here, WGS uplifted genetic diagnosis of PCD by identifying structural variants and novel modes of inheritance in new candidate genes. WGS could be an important component of the PCD diagnostic toolkit, increasing molecular diagnostic yield from current (70%) levels, and enhancing our understanding of fundamental biology of motile cilia and variants in the noncoding genome.

2.
Ophthalmic Genet ; : 1-6, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092760

RESUMEN

BACKGROUND: Biallelic pathogenic variants in CDH23 can cause Usher syndrome type I (USH1), typically characterized by sensorineural hearing loss, variable vestibular areflexia, and a progressive form of rod-cone dystrophy. While missense variants in CDH23 can cause DFNB12 deafness, other variants can affect the cadherin 23 function, more severely causing Usher syndrome type I D. The main purpose of our study is to describe the genotypes and phenotypes of patients with mild retinitis pigmentosa (RP), including sector RP with two pathogenic variants in CDH23. MATERIALS AND METHODS: Clinical examination included medical history, comprehensive ophthalmologic examination, and multimodal retinal imaging, and in case 1 and 2, full-field electroretinography (ERG). Genetic analysis was performed in all cases, and segregation testing of proband relatives was performed in case 1 and 3. RESULTS: Three unrelated cases presented with variable clinical phenotype for USH1 and were found to have two pathogenic variants in CDH23, with missense variant, c.5237 G > A: p.Arg1746Gln being common to all. All probands had mild to profound hearing loss. Case 1 and 3 had mild RP with mid peripheral and posterior pole sparing, while case 2 had sector RP. ERG results were consistent with the marked loss of retinal function in both eyes at the level of photoreceptor in case 1 and case 2, with normal peak time in the former. CONCLUSION: Patients harbouring c.5237 G > A: p.Arg1746Gln variants in CDH23 can present with a mild phenotype including sector RP. This can aid in better genetic counselling and in prognostication.

3.
Front Genet ; 15: 1419025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092430

RESUMEN

Introduction: Bardet-Biedl syndrome is a rare condition characterized by obesity, retinitis pigmentosa, polydactyly, development delay, and structural kidney anomalies. This syndrome has an autosomal recessive type of inheritance. For the first time, molecular genetic testing has been provided for a large cohort of Russian patients with Bardet-Biedl syndrome. Materials and methods: Genetic testing was provided to 61 unrelated patients using an MPS panel that includes coding regions and intronic areas of all genes (n = 21) currently associated with Bardet-Biedl syndrome. Results: The diagnosis was confirmed for 41% of the patients (n = 25). Disease-causing variants were observed in BBS1, BBS4, BBS7, TTC8, BBS9, BBS10, BBS12, and MKKS genes. In most cases, pathogenic and likely pathogenic variants were localized in BBS1, BBS10, and BBS7 genes; recurrent variants were also observed in these genes. Discussion: The frequency of pathogenic and likely pathogenic variants in the BBS1 and BBS10 genes among Russian patients matches the research data in other countries. The frequency of pathogenic variants in the BBS7 gene is about 1.5%-2% of patients with Bardet-Biedl syndrome, while in the cohort of Russian patients, the fraction is 24%. In addition, the recurrent pathogenic variant c.1967_1968delinsC was detected in the BBS7 gene. The higher frequency of this variant in the Russian population, as well as the lack of association of this pathogenic variant with Bardet-Biedl syndrome in other populations, suggests that the variant c.1967_1968delinsC in the BBS7 gene is major and has a founder effect in the Russian population. Results provided in this article show the significant role of pathogenic variants in the BBS7 gene for patients with Bardet-Biedl syndrome in the Russian population.

4.
Pediatr Nephrol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098869

RESUMEN

BACKGROUND: Nephronophthisis (NPH) comprises a heterogeneous group of inherited renal ciliopathies clinically characterized by progressive kidney failure. So far, definite diagnosis is based on molecular testing only. Here, we studied the feasibility of NPHP1 and NPHP4 immunostaining of nasal epithelial cells to secure and accelerate the diagnosis of NPH. METHODS: Samples of 86 individuals with genetically determined renal ciliopathies were analyzed for NPHP1 localization using immunofluorescence microscopy (IF). A sub-cohort of 35 individuals was also analyzed for NPHP4 localization. Western blotting was performed to confirm IF results. RESULTS: NPHP1 and NPHP4 were both absent in all individuals with disease-causing NPHP1 variants including one with a homozygous missense variant (c.1027G > A; p.Gly343Arg) formerly classified as a "variant of unknown significance." In individuals with an NPHP4 genotype, we observed a complete absence of NPHP4 while NPHP1 was severely reduced. IF results were confirmed by immunoblotting. Variants in other genes related to renal ciliopathies did not show any impact on NPHP1/NPHP4 expression. Aberrant immunostaining in two genetically unsolved individuals gave rise for a further genetic workup resulting in a genetic diagnosis for both with disease-causing variants in NPHP1 and NPHP4, respectively. CONCLUSIONS: IF of patient-derived respiratory epithelial cells may help to secure and accelerate the diagnosis of nephronophthisis-both by verifying inconclusive genetic results and by stratifying genetic diagnostic approaches. Furthermore, we provide in vivo evidence for the interaction of NPHP1 and NPHP4 in a functional module.

5.
Cureus ; 16(6): e62689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036105

RESUMEN

Mutations in the KIF7 gene have been implicated in autosomal recessive conditions such as Joubert syndrome, acrocallosal syndrome, and fetal hydrolethalus, as well as in retinal degeneration and other ocular manifestations due to their effect on primary cilia. In this study, we report that the full-field electroretinogram (ERG) test showed non-recordable scotopic ERG responses, while photopic ERG responses were diminished bilaterally. This is a case report of a 62-year-old female patient with painless, progressive vision loss in both eyes. Fundus examination revealed a pale optic nerve head, vessel attenuation, and macular thinning without peripheral pigmentary changes. The full-field electroretinogram (ERG) test showed non-recordable scotopic ERG responses, while photopic ERG responses were diminished bilaterally. Based on these ocular findings, the patient was clinically diagnosed with retinitis pigmentosa (RP) sine pigmento. Genetic testing identified a pathogenic heterozygous mutation in the KIF7 gene with the variant c.61C>T (p.Arg21*). Our case suggests that this pathologic variant may be associated with RP sine pigmento. Further studies are warranted to better understand the role of the KIF7 gene in retinal dystrophies.

6.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063141

RESUMEN

KIAA0586 variants have been associated with a wide range of ciliopathies, mainly Joubert syndrome (JS, OMIM #616490) and short-rib thoracic dysplasia syndrome (SRTD, OMIM #616546). However, the hypothesis that this gene is involved with hydrolethalus syndrome (HSL, OMIM #614120) and orofaciodigital syndrome IV (OMIM #258860) has already been raised. Ciliopathies' clinical features are often overlapped despite differing in phenotype severity. Besides KIAA0586, HYLS1 and KIF7 are also known for being causative of ciliopathies, indicating that all three genes may have similar or converging genomic pathways. Overall, the genotypic and phenotypic spectrum of ciliopathies becomes wider and conflicting while more and more new variants are added to this group of disorders' molecular pot. In this case report we discuss the first Brazilian individual clinically diagnosed with hydrolethalus syndrome and molecular findings that demonstrate the role of KIAA0586 as a causative gene of a group of genetic disorders. Also, recent reports on individuals with intronic and exonic variants combined leading to ciliopathies support our patient's molecular diagnosis. At the same time, we discuss variable expressivity and overlapping features in ciliopathies.


Asunto(s)
Anomalías Múltiples , Cerebelo , Anomalías del Ojo , Enfermedades Renales Quísticas , Fenotipo , Retina , Humanos , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/genética , Anomalías Múltiples/genética , Retina/anomalías , Retina/patología , Retina/metabolismo , Cerebelo/anomalías , Cerebelo/patología , Ciliopatías/genética , Masculino , Mutación , Femenino , Proteínas de Ciclo Celular
7.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001875

RESUMEN

The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, nonmoving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the downregulation of vitronectin-integrin αvß3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.


Asunto(s)
Diferenciación Celular , Cilios , Neovascularización Fisiológica , Hipófisis , Animales , Ratones , Angiogénesis , Cilios/metabolismo , Cilios/fisiología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones Noqueados , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Hipófisis/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Quinasas DyrK/genética
8.
FEBS J ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825736

RESUMEN

Centriolar satellites are ubiquitous membrane-less organelles that play critical roles in numerous cellular and organismal processes. They were initially discovered through electron microscopy as cytoplasmic granules surrounding centrosomes in vertebrate cells. These structures remained enigmatic until the identification of pericentriolar material 1 protein (PCM1) as their molecular marker, which has enabled their in-depth characterization. Recently, centriolar satellites have come into the spotlight due to their links to developmental and neurodegenerative disorders. This review presents a comprehensive summary of the major advances in centriolar satellite biology, with a focus on studies that investigated their biology associated with the essential scaffolding protein PCM1. We begin by exploring the molecular, cellular, and biochemical properties of centriolar satellites, laying the groundwork for a deeper understanding of their functions and mechanisms at both cellular and organismal levels. We then examine the implications of their dysregulation in various diseases, particularly highlighting their emerging roles in neurodegenerative and developmental disorders, as revealed by organismal models of PCM1. We conclude by discussing the current state of knowledge and posing questions about the adaptable nature of these organelles, thereby setting the stage for future research.

10.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791606

RESUMEN

Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.


Asunto(s)
Dedos , Megalencefalia , Humanos , Megalencefalia/genética , Dedos/anomalías
11.
Microorganisms ; 12(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38674609

RESUMEN

Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.

12.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502237

RESUMEN

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Asunto(s)
Anomalías Múltiples , Diferenciación Celular , Cerebelo , Cerebelo/anomalías , Anomalías del Ojo , Células Madre Pluripotentes Inducidas , Enfermedades Renales Quísticas , Neuronas , Retina , Retina/anomalías , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Cerebelo/patología , Cerebelo/metabolismo , Neuronas/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Retina/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/metabolismo , Masculino , Femenino , Mutación/genética , Cilios/metabolismo
13.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473800

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.


Asunto(s)
Hipertensión , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/complicaciones , Calidad de Vida , Riñón , Hipertensión/etiología , Hígado
14.
Am J Med Genet A ; 194(7): e63566, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38357848

RESUMEN

PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.409G>A p.Gly137Arg in PRKACA. In this study, we report the fifth affected individual with the same variant and review the clinical features and radiographic findings of this rare syndrome.


Asunto(s)
Anomalías Múltiples , Polidactilia , Humanos , Polidactilia/genética , Polidactilia/patología , Polidactilia/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/diagnóstico , Femenino , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interatrial/diagnóstico por imagen , Defectos del Tabique Interatrial/diagnóstico , Defectos del Tabique Interatrial/patología , Masculino , Fenotipo , Mutación/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/diagnóstico por imagen , India
15.
Biomedicines ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38397964

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.

16.
Pediatr Nephrol ; 39(9): 2569-2578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38261064

RESUMEN

The incidence of rare diseases is expected to be comparatively higher in the Middle East and North Africa (MENA) region than in other parts of the world, attributed to the high prevalence of consanguinity. Most MENA countries share social and economic statuses, cultural relativism, religious beliefs, and healthcare policies. Polycystic kidney diseases (PKDs) are the most common genetic causes of kidney failure, accounting for nearly 8.0% of dialysis cases. The development of PKDs is linked to variants in several genes, including PKD1, PKD2, PKHD1, DZIP1L, and CYS1. Autosomal recessive PKD (ARPKD) is the less common yet aggressive form of PKD. ARPKD has an estimated incidence between 1:10,000 and 1:40,000. Most patients with ARPKD require kidney replacement therapy earlier than patients with autosomal dominant polycystic kidney disease (ADPKD), often in their early years of life. This review gathered data from published research studies and reviews of ARPKD, highlighting the epidemiology, phenotypic presentation, investigations, genetic analysis, outcomes, and management. Although limited data are available, the published literature suggests that the incidence of ARPKD may be higher in the MENA region due to consanguineous marriages. Patients with ARPKD from the MENA region usually present at a later disease stage and have a relatively short time to progress to kidney failure. Limited data are available regarding the management practice in the region, which warrants further investigations.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Humanos , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/epidemiología , Riñón Poliquístico Autosómico Recesivo/terapia , Riñón Poliquístico Autosómico Recesivo/diagnóstico , Medio Oriente/epidemiología , África del Norte/epidemiología , Incidencia , Niño , Consanguinidad , Prevalencia
17.
Exp Brain Res ; 242(3): 619-637, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231387

RESUMEN

Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.


Asunto(s)
Anomalías Múltiples , Cerebelo , Anomalías del Ojo , Enfermedades Renales Quísticas , Enfermedades Renales Poliquísticas , Retina , Animales , Ratones , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Dominios C2 , Cerebelo/metabolismo , Cerebelo/anomalías , Cilios/genética , Cilios/metabolismo , Proteínas del Citoesqueleto/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Retina/anomalías
18.
Heliyon ; 10(1): e23257, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163131

RESUMEN

The WDR19 gene has been reported to be involved in nephronophthisis-related ciliopathies such as isolated nephronophthisis 13 (NPHP13), Sensenbrenner syndrome, Jeune syndrome, Senior-Loken syndrome, Caroli disease, retinitis pigmentosa and Asthenoteratospermia. In the present study, we provided the detailed clinical characteristics and genetic analysis of a patient with four variants in WDR19 and TG, reviewed a comprehensive mutation analysis in the WDR19-related ciliopathies, discussed the relationship between genotype and phenotype, and compared the allele frequencies (AFs) of WDR19 variants depending on the ethnic background. We used whole-exome sequencing (WES) combined with bioinformatics analysis to investigate the genetic variants of a 3-year-old boy with common features of WDR19-associated NPHP13 and Caroli disease, bilateral central blindness, refractory epilepsy, and elevated thyroid stimulating hormone. A novel splice-donor variant, c.98+1G > C, and a recurrent missense variant, c.3533G > A, were identified in the WDR19 gene. We used effective mRNA analysis to verify the effects on pre-mRNA processing and to assess the pathogenicity of the splice-site variant. The patient also harbored compound heterozygous variants of the TG gene (c.4889A > G, c.274+2T > G). Of note, using a review of an in-house database, we identified four additional likely pathogenic WDR19 variants and estimated the overall AF of WDR19 mutations to be 0.0025 in the southern Chinese population. Our findings have expanded the allelic spectrum of mutations in the WDR19 gene and broadened the clinical phenotype spectrum of WDR19-related ciliopathies. The results have also provided new insights into the clinical heterogeneity of the disorder, which would be useful in accurate genetic counseling for affected individuals and carrier screening in a general population.

19.
Neuron ; 112(1): 41-55.e3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37898123

RESUMEN

Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.


Asunto(s)
Cilios , Conectoma , Humanos , Neuronas/fisiología , Corteza Cerebral , Neuroglía/fisiología
20.
FEBS Lett ; 598(4): 457-476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38140814

RESUMEN

Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Chlamydomonas reinhardtii , Humanos , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Cilios/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA