Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Stud Health Technol Inform ; 315: 373-378, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049286

RESUMEN

Hospital-acquired falls are a continuing clinical concern. The emergence of advanced analytical methods, including NLP, has created opportunities to leverage nurse-generated data, such as clinical notes, to better address the problem of falls. In this nurse-driven study, we employed an iterative process for expert manual annotation of RNs clinical notes to enable the training and testing of an NLP pipeline to extract factors related to falls. The resulting annotated data corpus had moderately high interrater reliability (F-score=0.74) and captured a breadth of clinical concepts for extraction with potential utility beyond patient falls. Further research is needed to determine which annotation tasks most benefit from nursing expert annotators, to optimize efficiency when tapping into the invaluable resource represented by the nursing workforce.


Asunto(s)
Accidentes por Caídas , Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Accidentes por Caídas/prevención & control , Humanos , Factores de Riesgo , Registros de Enfermería , Minería de Datos/métodos , Medición de Riesgo
2.
J Eval Clin Pract ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031903

RESUMEN

RATIONALE: Clinical abbreviations pose a challenge for clinical decision support systems due to their ambiguity. Additionally, clinical datasets often suffer from class imbalance, hindering the classification of such data. This imbalance leads to classifiers with low accuracy and high error rates. Traditional feature-engineered models struggle with this task, and class imbalance is a known factor that reduces the performance of neural network techniques. AIMS AND OBJECTIVES: This study proposes an attention-based bidirectional long short-term memory (Bi-LSTM) model to improve clinical abbreviation disambiguation in clinical documents. We aim to address the challenges of limited training data and class imbalance by employing data generation techniques like reverse substitution and data augmentation with synonym substitution. METHOD: We utilise a Bi-LSTM classification model with an attention mechanism to disambiguate each abbreviation. The model's performance is evaluated based on accuracy for each abbreviation. To address the limitations of imbalanced data, we employ data generation techniques to create a more balanced dataset. RESULTS: The evaluation results demonstrate that our data balancing technique significantly improves the model's accuracy by 2.08%. Furthermore, the proposed attention-based Bi-LSTM model achieves an accuracy of 96.09% on the UMN dataset, outperforming state-of-the-art results. CONCLUSION: Deep neural network methods, particularly Bi-LSTM, offer promising alternatives to traditional feature-engineered models for clinical abbreviation disambiguation. By employing data generation techniques, we can address the challenges posed by limited-resource and imbalanced clinical datasets. This approach leads to a significant improvement in model accuracy for clinical abbreviation disambiguation tasks.

3.
J Am Med Inform Assoc ; 31(9): 2114-2124, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657567

RESUMEN

OBJECTIVES: Generative large language models (LLMs) are a subset of transformers-based neural network architecture models. LLMs have successfully leveraged a combination of an increased number of parameters, improvements in computational efficiency, and large pre-training datasets to perform a wide spectrum of natural language processing (NLP) tasks. Using a few examples (few-shot) or no examples (zero-shot) for prompt-tuning has enabled LLMs to achieve state-of-the-art performance in a broad range of NLP applications. This article by the American Medical Informatics Association (AMIA) NLP Working Group characterizes the opportunities, challenges, and best practices for our community to leverage and advance the integration of LLMs in downstream NLP applications effectively. This can be accomplished through a variety of approaches, including augmented prompting, instruction prompt tuning, and reinforcement learning from human feedback (RLHF). TARGET AUDIENCE: Our focus is on making LLMs accessible to the broader biomedical informatics community, including clinicians and researchers who may be unfamiliar with NLP. Additionally, NLP practitioners may gain insight from the described best practices. SCOPE: We focus on 3 broad categories of NLP tasks, namely natural language understanding, natural language inferencing, and natural language generation. We review the emerging trends in prompt tuning, instruction fine-tuning, and evaluation metrics used for LLMs while drawing attention to several issues that impact biomedical NLP applications, including falsehoods in generated text (confabulation/hallucinations), toxicity, and dataset contamination leading to overfitting. We also review potential approaches to address some of these current challenges in LLMs, such as chain of thought prompting, and the phenomena of emergent capabilities observed in LLMs that can be leveraged to address complex NLP challenge in biomedical applications.


Asunto(s)
Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Informática Médica , Humanos
4.
J Am Med Inform Assoc ; 31(9): 1892-1903, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630580

RESUMEN

OBJECTIVE: To solve major clinical natural language processing (NLP) tasks using a unified text-to-text learning architecture based on a generative large language model (LLM) via prompt tuning. METHODS: We formulated 7 key clinical NLP tasks as text-to-text learning and solved them using one unified generative clinical LLM, GatorTronGPT, developed using GPT-3 architecture and trained with up to 20 billion parameters. We adopted soft prompts (ie, trainable vectors) with frozen LLM, where the LLM parameters were not updated (ie, frozen) and only the vectors of soft prompts were updated, known as prompt tuning. We added additional soft prompts as a prefix to the input layer, which were optimized during the prompt tuning. We evaluated the proposed method using 7 clinical NLP tasks and compared them with previous task-specific solutions based on Transformer models. RESULTS AND CONCLUSION: The proposed approach achieved state-of-the-art performance for 5 out of 7 major clinical NLP tasks using one unified generative LLM. Our approach outperformed previous task-specific transformer models by ∼3% for concept extraction and 7% for relation extraction applied to social determinants of health, 3.4% for clinical concept normalization, 3.4%-10% for clinical abbreviation disambiguation, and 5.5%-9% for natural language inference. Our approach also outperformed a previously developed prompt-based machine reading comprehension (MRC) model, GatorTron-MRC, for clinical concept and relation extraction. The proposed approach can deliver the "one model for all" promise from training to deployment using a unified generative LLM.


Asunto(s)
Procesamiento de Lenguaje Natural , Registros Electrónicos de Salud , Humanos , Aprendizaje Automático
5.
Stud Health Technol Inform ; 310: 669-673, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269893

RESUMEN

The extraction of medication information from unstructured clinical documents has been a major application of clinical NLP in the past decade as evidenced by the conduct of two shared tasks under the I2B2 and N2C2 umbrella. We here propose a new methodological approach which has already shown a tremendous potential for increasing system performance for general NLP tasks, but has so far not been applied to medication extraction from EHR data, namely deep learning based on transformer models. We ran experiments on established clinical data sets for English (exploiting I2B2 and N2C2 corpora) and German (based on the 3000PA corpus, a German reference data set). Our results reveal that transformer models are on a par with current state-of-the-art results for English, but yield new ones for German data. We further address the influence of context on the overall performance of transformer-based medication relation extraction.


Asunto(s)
Análisis de Datos , Preparaciones Farmacéuticas , Aprendizaje Profundo
6.
IEEE J Transl Eng Health Med ; 11: 469-478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817825

RESUMEN

When dealing with clinical text classification on a small dataset, recent studies have confirmed that a well-tuned multilayer perceptron outperforms other generative classifiers, including deep learning ones. To increase the performance of the neural network classifier, feature selection for the learning representation can effectively be used. However, most feature selection methods only estimate the degree of linear dependency between variables and select the best features based on univariate statistical tests. Furthermore, the sparsity of the feature space involved in the learning representation is ignored. GOAL: Our aim is, therefore, to access an alternative approach to tackle the sparsity by compressing the clinical representation feature space, where limited French clinical notes can also be dealt with effectively. METHODS: This study proposed an autoencoder learning algorithm to take advantage of sparsity reduction in clinical note representation. The motivation was to determine how to compress sparse, high-dimensional data by reducing the dimension of the clinical note representation feature space. The classification performance of the classifiers was then evaluated in the trained and compressed feature space. RESULTS: The proposed approach provided overall performance gains of up to 3% for each test set evaluation. Finally, the classifier achieved 92% accuracy, 91% recall, 91% precision, and 91% f1-score in detecting the patient's condition. Furthermore, the compression working mechanism and the autoencoder prediction process were demonstrated by applying the theoretic information bottleneck framework. Clinical and Translational Impact Statement- An autoencoder learning algorithm effectively tackles the problem of sparsity in the representation feature space from a small clinical narrative dataset. Significantly, it can learn the best representation of the training data because of its lossless compression capacity compared to other approaches. Consequently, its downstream classification ability can be significantly improved, which cannot be done using deep learning models.


Asunto(s)
Algoritmos , Compresión de Datos , Humanos , Redes Neurales de la Computación , Correlación de Datos
7.
BMC Med Inform Decis Mak ; 23(1): 216, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833661

RESUMEN

BACKGROUND: Important clinical information of patients is present in unstructured free-text fields of Electronic Health Records (EHRs). While this information can be extracted using clinical Natural Language Processing (cNLP), the recognition of negation modifiers represents an important challenge. A wide range of cNLP applications have been developed to detect the negation of medical entities in clinical free-text, however, effective solutions for languages other than English are scarce. This study aimed at developing a solution for negation recognition in Spanish EHRs based on a combination of a customized rule-based NegEx layer and a convolutional neural network (CNN). METHODS: Based on our previous experience in real world evidence (RWE) studies using information embedded in EHRs, negation recognition was simplified into a binary problem ('affirmative' vs. 'non-affirmative' class). For the NegEx layer, negation rules were obtained from a publicly available Spanish corpus and enriched with custom ones, whereby the CNN binary classifier was trained on EHRs annotated for clinical named entities (cNEs) and negation markers by medical doctors. RESULTS: The proposed negation recognition pipeline obtained precision, recall, and F1-score of 0.93, 0.94, and 0.94 for the 'affirmative' class, and 0.86, 0.84, and 0.85 for the 'non-affirmative' class, respectively. To validate the generalization capabilities of our methodology, we applied the negation recognition pipeline on EHRs (6,710 cNEs) from a different data source distribution than the training corpus and obtained consistent performance metrics for the 'affirmative' and 'non-affirmative' class (0.95, 0.97, and 0.96; and 0.90, 0.83, and 0.86 for precision, recall, and F1-score, respectively). Lastly, we evaluated the pipeline against two publicly available Spanish negation corpora, the IULA and NUBes, obtaining state-of-the-art metrics (1.00, 0.99, and 0.99; and 1.00, 0.93, and 0.96 for precision, recall, and F1-score, respectively). CONCLUSION: Negation recognition is a source of low precision in the retrieval of cNEs from EHRs' free-text. Combining a customized rule-based NegEx layer with a CNN binary classifier outperformed many other current approaches. RWE studies highly benefit from the correct recognition of negation as it reduces false positive detections of cNE which otherwise would undoubtedly reduce the credibility of cNLP systems.


Asunto(s)
Algoritmos , Procesamiento de Lenguaje Natural , Humanos , Redes Neurales de la Computación , Registros Electrónicos de Salud , Lenguaje
8.
J Biomed Inform ; 144: 104444, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451494

RESUMEN

INTRODUCTION: Clinical trials (CTs) often fail due to inadequate patient recruitment. Finding eligible patients involves comparing the patient's information with the CT eligibility criteria. Automated patient matching offers the promise of improving the process, yet the main difficulties of CT retrieval lie in the semantic complexity of matching unstructured patient descriptions with semi-structured, multi-field CT documents and in capturing the meaning of negation coming from the eligibility criteria. OBJECTIVES: This paper tackles the challenges of CT retrieval by presenting an approach that addresses the patient-to-trials paradigm. Our approach involves two key components in a pipeline-based model: (i) a data enrichment technique for enhancing both queries and documents during the first retrieval stage, and (ii) a novel re-ranking schema that uses a Transformer network in a setup adapted to this task by leveraging the structure of the CT documents. METHODS: We use named entity recognition and negation detection in both patient description and the eligibility section of CTs. We further classify patient descriptions and CT eligibility criteria into current, past, and family medical conditions. This extracted information is used to boost the importance of disease and drug mentions in both query and index for lexical retrieval. Furthermore, we propose a two-step training schema for the Transformer network used to re-rank the results from the lexical retrieval. The first step focuses on matching patient information with the descriptive sections of trials, while the second step aims to determine eligibility by matching patient information with the criteria section. RESULTS: Our findings indicate that the inclusion criteria section of the CT has a great influence on the relevance score in lexical models, and that the enrichment techniques for queries and documents improve the retrieval of relevant trials. The re-ranking strategy, based on our training schema, consistently enhances CT retrieval and shows improved performance by 15% in terms of precision at retrieving eligible trials. CONCLUSION: The results of our experiments suggest the benefit of making use of extracted entities. Moreover, our proposed re-ranking schema shows promising effectiveness compared to larger neural models, even with limited training data. These findings offer valuable insights for improving methods for retrieval of clinical documents.


Asunto(s)
Almacenamiento y Recuperación de la Información , Semántica , Humanos
9.
J Biomed Inform ; 143: 104391, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196988

RESUMEN

OBJECTIVE: This article summarizes our approach to extracting medication and corresponding attributes from clinical notes, which is the focus of track 1 of the 2022 National Natural Language Processing (NLP) Clinical Challenges(n2c2) shared task. METHODS: The dataset was prepared using Contextualized Medication Event Dataset (CMED), including 500 notes from 296 patients. Our system consisted of three components: medication named entity recognition (NER), event classification (EC), and context classification (CC). These three components were built using transformer models with slightly different architecture and input text engineering. A zero-shot learning solution for CC was also explored. RESULTS: Our best performance systems achieved micro-average F1 scores of 0.973, 0.911, and 0.909 for the NER, EC, and CC, respectively. CONCLUSION: In this study, we implemented a deep learning-based NLP system and demonstrated that our approach of (1) utilizing special tokens helps our model to distinguish multiple medications mentions in the same context; (2) aggregating multiple events of a single medication into multiple labels improves our model's performance.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Lenguaje Natural
10.
J Biomed Inform ; 141: 104358, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023846

RESUMEN

Brief Hospital Course (BHC) summaries are succinct summaries of an entire hospital encounter, embedded within discharge summaries, written by senior clinicians responsible for the overall care of a patient. Methods to automatically produce summaries from inpatient documentation would be invaluable in reducing clinician manual burden of summarising documents under high time-pressure to admit and discharge patients. Automatically producing these summaries from the inpatient course, is a complex, multi-document summarisation task, as source notes are written from various perspectives (e.g. nursing, doctor, radiology), during the course of the hospitalisation. We demonstrate a range of methods for BHC summarisation demonstrating the performance of deep learning summarisation models across extractive and abstractive summarisation scenarios. We also test a novel ensemble extractive and abstractive summarisation model that incorporates a medical concept ontology (SNOMED) as a clinical guidance signal and shows superior performance in 2 real-world clinical data sets.


Asunto(s)
Registros Electrónicos de Salud , Registros de Salud Personal , Humanos , Alta del Paciente , Documentación , Hospitales , Procesamiento de Lenguaje Natural
11.
J Biomed Inform ; 142: 104370, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100106

RESUMEN

OBJECTIVE: To develop a natural language processing (NLP) system to extract medications and contextual information that help understand drug changes. This project is part of the 2022 n2c2 challenge. MATERIALS AND METHODS: We developed NLP systems for medication mention extraction, event classification (indicating medication changes discussed or not), and context classification to classify medication changes context into 5 orthogonal dimensions related to drug changes. We explored 6 state-of-the-art pretrained transformer models for the three subtasks, including GatorTron, a large language model pretrained using > 90 billion words of text (including > 80 billion words from > 290 million clinical notes identified at the University of Florida Health). We evaluated our NLP systems using annotated data and evaluation scripts provided by the 2022 n2c2 organizers. RESULTS: Our GatorTron models achieved the best F1-scores of 0.9828 for medication extraction (ranked 3rd), 0.9379 for event classification (ranked 2nd), and the best micro-average accuracy of 0.9126 for context classification. GatorTron outperformed existing transformer models pretrained using smaller general English text and clinical text corpora, indicating the advantage of large language models. CONCLUSION: This study demonstrated the advantage of using large transformer models for contextual medication information extraction from clinical narratives.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Lenguaje Natural , Almacenamiento y Recuperación de la Información
12.
JMIR Med Inform ; 11: e37805, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595345

RESUMEN

Experts have noted a concerning gap between clinical natural language processing (NLP) research and real-world applications, such as clinical decision support. To help address this gap, in this viewpoint, we enumerate a set of practical considerations for developing an NLP system to support real-world clinical needs and improve health outcomes. They include determining (1) the readiness of the data and compute resources for NLP, (2) the organizational incentives to use and maintain the NLP systems, and (3) the feasibility of implementation and continued monitoring. These considerations are intended to benefit the design of future clinical NLP projects and can be applied across a variety of settings, including large health systems or smaller clinical practices that have adopted electronic medical records in the United States and globally.

13.
J Biomed Inform ; 138: 104286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706848

RESUMEN

The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgement that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, Dr.Bench, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models for diagnostic reasoning. The goal of DR. BENCH is to advance the science in cNLP to support downstream applications in computerized diagnostic decision support and improve the efficiency and accuracy of healthcare providers during patient care. We fine-tune and evaluate the state-of-the-art generative models on DR.BENCH. Experiments show that with domain adaptation pre-training on medical knowledge, the model demonstrated opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community. We also discuss the carbon footprint produced during the experiments and encourage future work on DR.BENCH to report the carbon footprint.


Asunto(s)
Inteligencia Artificial , Procesamiento de Lenguaje Natural , Humanos , Benchmarking , Solución de Problemas , Almacenamiento y Recuperación de la Información
14.
J Am Med Inform Assoc ; 30(2): 340-347, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36451266

RESUMEN

OBJECTIVE: Clinical knowledge-enriched transformer models (eg, ClinicalBERT) have state-of-the-art results on clinical natural language processing (NLP) tasks. One of the core limitations of these transformer models is the substantial memory consumption due to their full self-attention mechanism, which leads to the performance degradation in long clinical texts. To overcome this, we propose to leverage long-sequence transformer models (eg, Longformer and BigBird), which extend the maximum input sequence length from 512 to 4096, to enhance the ability to model long-term dependencies in long clinical texts. MATERIALS AND METHODS: Inspired by the success of long-sequence transformer models and the fact that clinical notes are mostly long, we introduce 2 domain-enriched language models, Clinical-Longformer and Clinical-BigBird, which are pretrained on a large-scale clinical corpus. We evaluate both language models using 10 baseline tasks including named entity recognition, question answering, natural language inference, and document classification tasks. RESULTS: The results demonstrate that Clinical-Longformer and Clinical-BigBird consistently and significantly outperform ClinicalBERT and other short-sequence transformers in all 10 downstream tasks and achieve new state-of-the-art results. DISCUSSION: Our pretrained language models provide the bedrock for clinical NLP using long texts. We have made our source code available at https://github.com/luoyuanlab/Clinical-Longformer, and the pretrained models available for public download at: https://huggingface.co/yikuan8/Clinical-Longformer. CONCLUSION: This study demonstrates that clinical knowledge-enriched long-sequence transformers are able to learn long-term dependencies in long clinical text. Our methods can also inspire the development of other domain-enriched long-sequence transformers.


Asunto(s)
Lenguaje , Aprendizaje , Procesamiento de Lenguaje Natural
15.
J Biomed Inform ; 136: 104232, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36307020

RESUMEN

Natural Language Processing (NLP) can offer important tools for unlocking relevant information from clinical narratives. Although Transformer-based models can achieve remarkable results in several different NLP tasks, these models have been less used in clinical NLP, and particularly in low resource languages, of which Portuguese is one example. It is still not entirely clear whether pre-trained Transformer models are useful for clinical tasks, without further architecture engineering or particular training strategies. In this work, we propose a BERT model to assign ICD-10 codes for causes of death, by analyzing free-text descriptions in death certificates, together with the associated autopsy reports and clinical bulletins, from the Portuguese Ministry of Health. We used a novel pre-training procedure that incorporates in-domain knowledge, and also a fine-tuning method to address the class imbalance issue. Experimental results show that, in this particular clinical task that requires the processing of relatively short documents, Transformer-based models can achieve very strong results, significantly outperforming tailored approaches based on recurrent neural networks.


Asunto(s)
Certificado de Defunción , Clasificación Internacional de Enfermedades , Portugal , Procesamiento de Lenguaje Natural , Redes Neurales de la Computación
16.
JMIR Med Inform ; 10(8): e37842, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35969459

RESUMEN

BACKGROUND: Family health history has been recognized as an essential factor for cancer risk assessment and is an integral part of many cancer screening guidelines, including genetic testing for personalized clinical management strategies. However, manually identifying eligible candidates for genetic testing is labor intensive. OBJECTIVE: The aim of this study was to develop a natural language processing (NLP) pipeline and assess its contribution to identifying patients who meet genetic testing criteria for hereditary cancers based on family health history data in the electronic health record (EHR). We compared an algorithm that uses structured data alone with structured data augmented using NLP. METHODS: Algorithms were developed based on the National Comprehensive Cancer Network (NCCN) guidelines for genetic testing for hereditary breast, ovarian, pancreatic, and colorectal cancers. The NLP-augmented algorithm uses both structured family health history data and the associated unstructured free-text comments. The algorithms were compared with a reference standard of 100 patients with a family health history in the EHR. RESULTS: Regarding identifying the reference standard patients meeting the NCCN criteria, the NLP-augmented algorithm compared with the structured data algorithm yielded a significantly higher recall of 0.95 (95% CI 0.9-0.99) versus 0.29 (95% CI 0.19-0.40) and a precision of 0.99 (95% CI 0.96-1.00) versus 0.81 (95% CI 0.65-0.95). On the whole data set, the NLP-augmented algorithm extracted 33.6% more entities, resulting in 53.8% more patients meeting the NCCN criteria. CONCLUSIONS: Compared with the structured data algorithm, the NLP-augmented algorithm based on both structured and unstructured family health history data in the EHR increased the number of patients identified as meeting the NCCN criteria for genetic testing for hereditary breast or ovarian and colorectal cancers.

17.
LREC Int Conf Lang Resour Eval ; 2022: 5484-5493, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35939277

RESUMEN

Applying methods in natural language processing on electronic health records (EHR) data is a growing field. Existing corpus and annotation focus on modeling textual features and relation prediction. However, there is a paucity of annotated corpus built to model clinical diagnostic thinking, a process involving text understanding, domain knowledge abstraction and reasoning. This work introduces a hierarchical annotation schema with three stages to address clinical text understanding, clinical reasoning, and summarization. We created an annotated corpus based on an extensive collection of publicly available daily progress notes, a type of EHR documentation that is collected in time series in a problem-oriented format. The conventional format for a progress note follows a Subjective, Objective, Assessment and Plan heading (SOAP). We also define a new suite of tasks, Progress Note Understanding, with three tasks utilizing the three annotation stages. The novel suite of tasks was designed to train and evaluate future NLP models for clinical text understanding, clinical knowledge representation, inference, and summarization.

18.
IEEE Open J Eng Med Biol ; 3: 142-149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712317

RESUMEN

The rapid progress in clinical data management systems and artificial intelligence approaches enable the era of personalized medicine. Intensive care units (ICUs) are ideal clinical research environments for such development because they collect many clinical data and are highly computerized. Goal: We designed a retrospective clinical study on a prospective ICU database using clinical natural language to help in the early diagnosis of heart failure in critically ill children. Methods: The methodology consisted of empirical experiments of a learning algorithm to learn the hidden interpretation and presentation of the French clinical note data. This study included 1386 patients' clinical notes with 5444 single lines of notes. There were 1941 positive cases (36% of total) and 3503 negative cases classified by two independent physicians using a standardized approach. Results: The multilayer perceptron neural network outperforms other discriminative and generative classifiers. Consequently, the proposed framework yields an overall classification performance with 89% accuracy, 88% recall, and 89% precision. Conclusions: This study successfully applied learning representation and machine learning algorithms to detect heart failure in a single French institution from clinical natural language. Further work is needed to use the same methodology in other languages and institutions.

19.
J Am Med Inform Assoc ; 28(10): 2108-2115, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34333635

RESUMEN

OBJECTIVE: Clinical notes contain an abundance of important, but not-readily accessible, information about patients. Systems that automatically extract this information rely on large amounts of training data of which there exists limited resources to create. Furthermore, they are developed disjointly, meaning that no information can be shared among task-specific systems. This bottleneck unnecessarily complicates practical application, reduces the performance capabilities of each individual solution, and associates the engineering debt of managing multiple information extraction systems. MATERIALS AND METHODS: We address these challenges by developing Multitask-Clinical BERT: a single deep learning model that simultaneously performs 8 clinical tasks spanning entity extraction, personal health information identification, language entailment, and similarity by sharing representations among tasks. RESULTS: We compare the performance of our multitasking information extraction system to state-of-the-art BERT sequential fine-tuning baselines. We observe a slight but consistent performance degradation in MT-Clinical BERT relative to sequential fine-tuning. DISCUSSION: These results intuitively suggest that learning a general clinical text representation capable of supporting multiple tasks has the downside of losing the ability to exploit dataset or clinical note-specific properties when compared to a single, task-specific model. CONCLUSIONS: We find our single system performs competitively with all state-the-art task-specific systems while also benefiting from massive computational benefits at inference.


Asunto(s)
Almacenamiento y Recuperación de la Información , Procesamiento de Lenguaje Natural , Humanos , Lenguaje
20.
Artif Intell Med ; 118: 102086, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34412834

RESUMEN

Electronic health record systems are ubiquitous and the majority of patients' data are now being collected electronically in the form of free text. Deep learning has significantly advanced the field of natural language processing and the self-supervised representation learning and the transfer learning have become the methods of choice in particular when the high quality annotated data are limited. Identification of medical concepts and information extraction is a challenging task, yet important ingredient for parsing unstructured data into structured and tabulated format for downstream analytical tasks. In this work we introduced a named-entity recognition (NER) model for clinical natural language processing. The model is trained to recognise seven categories: drug names, route of administration, frequency, dosage, strength, form, duration. The model was first pre-trained on the task of predicting the next word, using a collection of 2 million free-text patients' records from MIMIC-III corpora followed by fine-tuning on the named-entity recognition task. The model achieved a micro-averaged F1 score of 0.957 across all seven categories. Additionally, we evaluated the transferability of the developed model using the data from the Intensive Care Unit in the US to secondary care mental health records (CRIS) in the UK. A direct application of the trained NER model to CRIS data resulted in reduced performance of F1 = 0.762, however after fine-tuning on a small sample from CRIS, the model achieved a reasonable performance of F1 = 0.944. This demonstrated that despite a close similarity between the data sets and the NER tasks, it is essential to fine-tune the target domain data in order to achieve more accurate results. The resulting model and the pre-trained embeddings are available at https://github.com/kormilitzin/med7.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Humanos , Almacenamiento y Recuperación de la Información , Unidades de Cuidados Intensivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA