Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
ACS Nano ; 18(23): 15194-15203, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815184

RESUMEN

Low-dimensional metal nanostructures have attracted considerable research attention, owing to their potential as catalysts. A controlled reductive phase transition of monolayer RuO2 nanosheets could provide an effective way to produce holey large-area 2D Ru nanosheets with tailored defect structures and metal coordination number. The locally optimized holey Ru metal nanosheet, with a metal coordination number of ∼10.2, exhibited excellent electrocatalytic activity for the hydrogen evolution reaction (HER) with a reduced overpotential of 38 mV in a 1 M KOH electrolyte. The creation of a highly anisotropic holey nanosheet morphology with optimization of local structure was quite effective in developing efficient catalyst materials. The universal importance of controlling the coordination number was confirmed through a comparative study of Ru nanoparticles, which showed optimized HER activity with an identical metal coordination number. The coordination number plays a pivotal role in governing electrocatalytic activity, which could be ascribed to the formation of the most active structure for HER at most 2 defects near active sites (2,2'), resulting in the stabilization of a dihydrogen Ru-(H2) intermediate and the increased contribution of Volmer-Tafel mechanism.

2.
ChemSusChem ; : e202400150, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472126

RESUMEN

Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) produces multi-carbon (C2+) chemicals with considerable selectivities and activities, yet required high overpotentials impede its practical application. Here, we design interfaces with abrupt coordination number (CN) changes that greatly reduce the applied potential for achieving high C2+ Faradaic efficiency (FE). Encouraged by the mechanistic finding that the coupling between *CO and *CO(H) is the most probable C-C bond formation path, we use Cu2O- and Cu-phthalocyanine-derived Cu (OD-Cu and PD-Cu) to build the interface. Using operando X-ray absorption spectroscopy (XAS), we find that the Cu CN of OD-Cu is ~11, favoring CO* adsorption, while the PD-Cu has a COH*-favorable CN of ~4. Operando Raman spectroscopy revealed that the interfaces with abrupt CN changes promote *OCCOH formation. As a result, the designed catalyst achieves a C2+ FE of 85±2 % at 220 mA cm-2 in a zero-gap CO2 electrolyzer. An improvement of C2+ FE by 3 times is confirmed at the low potential regime where the current density is 60-140 mA cm-2, compared to bare OD-Cu. We report a 45-h stable CO2RR operation at 220 mA cm-2, producing a C2+ product FE of ~80 %.

3.
Angew Chem Int Ed Engl ; 63(16): e202319936, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372428

RESUMEN

Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.

4.
Angew Chem Int Ed Engl ; 63(16): e202401214, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393606

RESUMEN

It is essential to probe the coordination number (CN) because it is a crucial factor to ensure the catalytic capability of single-atom catalysts (SACs). Currently, synchrotron X-ray absorption spectroscopy (XAS) is widely used to measure the CN. However, the scarcity of synchrotron X-ray source and complicated data analysis restrict its wide applications in determining the CN of SACs. In this contribution, we have developed a d-band center-regulated acetone cataluminescence (CTL) probe for a rapid screening of the CN of Pt-SACs. It is disclosed that the CN-triggered CTL is attributed to the fact that the increased CN could induce the downward shift of d-band center position, which assists the acetone adsorption and promotes the subsequent catalytic reaction. In addition, the universality of the proposed acetone-CTL probe is verified by determining the CN of Fe-SACs. This work has opened a new avenue for exploring an alternative to synchrotron XAS for the determination of CN of SACs and even conventional metal catalysts through d-band center-regulated CTL.

5.
Adv Mater ; 36(21): e2313086, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341608

RESUMEN

A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.

6.
Adv Mater ; 36(24): e2400764, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415407

RESUMEN

Supported metal catalysts have been exploited in various applications. Among them, cocatalyst supported on photocatalyst is essential for activation of photocatalysis. However, cocatalyst decoration in a controllable fashion to promote intrinsic activity remains challenging. Herein, a versatile method is developed for cocatalyst synthesis using an ice-templating (ICT) strategy, resulting in size control from single-atom (SA), and atomic clusters (AC) to nanoparticles (NP). Importantly, the coordination numbers (CN) of decorated AC cocatalysts are highly controllable, and this ICT method applies to various metals and photocatalytic substrates. Taking narrow-band gap Ga-doped La5Ti2Cu0.9Ag0.1O7S5 (LTCA) photocatalyst as an example, supported Ru AC/LTCA catalysts with regulable Ru CNs have been prepared, delivering significantly enhanced activities compared to Ru SA and Ru NPs supported on LTCA. Specifically, Ru(CN = 3.4) AC/LTCA with an average CN of Ru─Ru bond measured to be ≈3.4 exhibits excellent photocatalytic H2 evolution rate (578 µmol h-1) under visible light irradiation. Density functional theory calculation reveals that the modeled Ru(CN = 3) atomic cluster cocatalyst possesses favorable electronic properties and available active sites for the H2 evolution reaction.

7.
Nanomicro Lett ; 16(1): 111, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321305

RESUMEN

Hydrogen evolution reaction (HER) has become a key factor affecting the cycling stability of aqueous Zn-ion batteries, while the corresponding fundamental issues involving HER are still unclear. Herein, the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory. It is found that the Volmer step is the rate-limiting step of HER on the Zn (002) and (100) surfaces, while, the reaction rates of HER on the Zn (101), (102) and (103) surfaces are determined by the Tafel step. Moreover, the correlation between HER activity and the generalized coordination number ([Formula: see text]) of Zn at the surfaces has been revealed. The relatively weaker HER activity on Zn (002) surface can be attributed to the higher [Formula: see text] of surface Zn atom. The atomically uneven Zn (002) surface shows significantly higher HER activity than the flat Zn (002) surface as the [Formula: see text] of the surface Zn atom is lowered. The [Formula: see text] of surface Zn atom is proposed as a key descriptor of HER activity. Tuning the [Formula: see text] of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies. Furthermore, this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface.

8.
Nanomaterials (Basel) ; 13(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133033

RESUMEN

Amorphous, glassy or disordered materials play important roles in developing structural materials from metals or ceramics, devices from semiconductors or medicines from organic compounds. Their local structure is frequently similar to crystalline ones. A computer program is presented here that runs under the Windows operating system on a PC to extract pair distribution function (PDF) from electron diffraction in a transmission electron microscope (TEM). A polynomial correction reduces small systematic deviations from the expected average Q-dependence of scattering. Neighbor distance and coordination number measurements are supplemented by either measurement or enforcement of number density. Quantification of similarity is supported by calculation of Pearson's correlation coefficient and fingerprinting. A rough estimate of fractions in a mixture is computed by multiple least-square fitting using the PDFs from components of the mixture. PDF is also simulated from crystalline structural models (in addition to measured ones) to be used in libraries for fingerprinting or fraction estimation. Crystalline structure models for simulations are obtained from CIF files or str files of ProcessDiffraction. Data from inorganic samples exemplify usage. In contrast to previous free ePDF programs, our stand-alone program does not need a special software environment, which is a novelty. The program is available from the author upon request.

9.
Environ Sci Technol ; 57(41): 15747-15758, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37788364

RESUMEN

Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.


Asunto(s)
Amoníaco , Platino (Metal) , Amoníaco/química , Oxidación-Reducción , Circonio/química , Oxígeno , Catálisis
10.
ACS Appl Mater Interfaces ; 15(22): 26650-26659, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37226049

RESUMEN

The rational design of advanced catalysts for sodium-sulfur (Na-S) batteries is important but remains challenging due to the limited understanding of sulfur catalytic mechanisms. Here, we propose an efficient sulfur host consisting of atomic low-coordinated Zn-N2 sites dispersed on N-rich microporous graphene (Zn-N2@NG), which realizes state-of-the-art sodium-storage performance with a high sulfur content of 66 wt %, high-rate capability (467 mA h g-1 at 5 A g-1), and long cycling stability for 6500 cycles with an ultralow capacity decay rate of 0.0062% per cycle. Ex situ methods combined with theoretical calculations demonstrate the superior bidirectional catalysis of Zn-N2 sites on sulfur conversion (S8 ↔ Na2S). Furthermore, in situ transmission electron microscopy was applied to visualize the microscopic S redox evolution under the catalysis of Zn-N2 sites without liquid electrolytes. During the sodiation process, both surface S nanoparticles and S molecules in the mircopores of Zn-N2@NG quickly convert into Na2S nanograins. During the following desodiation process, only a small part of the above Na2S can be oxidized into Na2Sx. These results reveal that, without liquid electrolytes, Na2S is difficult to be decomposed even with the assistance of Zn-N2 sites. This conclusion emphasizes the critical role of liquid electrolytes in the catalytic oxidation of Na2S, which was usually ignored by previous works.

11.
Angew Chem Int Ed Engl ; 62(29): e202304134, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37211537

RESUMEN

The reduction of alkynyl-silver and phosphine-silver precursors with a weak reducing reagent Ph2 SiH2 led to the formation of a novel silver nanocluster [Ag93 (PPh3 )6 (C≡CR)50 ]3+ (R=4-CH3 OC6 H4 ), which is the largest structurally characterized cluster of clusters. This disc-shaped cluster has a Ag69 kernel consisting of a bicapped hexagonal prismatic Ag15 unit wrapped by six Ino decahedra through edge-sharing. This is the first time that Ino decahedra are used as a building block to assemble a cluster of clusters. Moreover, the central silver atom has a coordination number of 14, which is the highest in metal nanoclusters. This work provides a diverse metal packing pattern in metal nanoclusters, which is helpful for understanding metal cluster assembling mechanisms.

12.
Membranes (Basel) ; 13(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37103810

RESUMEN

The discrete element method coupled with the computational fluid dynamic (CFD-DEM) method is effective for studying the micro-flow process of lignin particles in ceramic membranes. Lignin particles may exhibit various shapes in industry, so it is difficult to model their real shapes in CFD-DEM coupled solutions. Meanwhile, the solution of non-spherical particles requires a very small time-step, which significantly lowers the computational efficiency. Based on this, we proposed a method to simplify the shape of lignin particles into spheres. However, the rolling friction coefficient during the replacement was hard to be obtained. Therefore, the CFD-DEM method was employed to simulate the deposition of lignin particles on a ceramic membrane. Impacts of the rolling friction coefficient on the deposition morphology of the lignin particles were analyzed. The coordination number and porosity of the lignin particles after deposition were calculated, based on which the rolling friction coefficient was calibrated. The results indicated that the deposition morphology, coordination number, and porosity of the lignin particles can be significantly affected by the rolling friction coefficient and slightly influenced by that between the lignin particles and membranes. When the rolling friction coefficient among different particles increased from 0.1 to 3.0, the average coordination number decreased from 3.96 to 2.73, and the porosity increased from 0.65 to 0.73. Besides, when the rolling friction coefficient among the lignin particles was set to 0.6-2.4, the spherical lignin particles could replace the non-spherical particles.

13.
Acta Biomater ; 164: 563-576, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004783

RESUMEN

Single-atomic nanozymes (SANZs) characterized by atomically dispersed single metal atoms have recently contributed to breakthroughs in biomedicine due to their satisfactory catalytic activity and superior selectivity compared to their nanoscale counterparts. The catalytic performance of SANZs can be improved by modulating their coordination structure. Therefore, adjusting the coordination number of the metal atoms in the active center is a potential method for enhancing the catalytic therapy effect. In this study, we synthesized various atomically dispersed Co nanozymes with different nitrogen coordination numbers for peroxidase (POD)-mimicking single-atomic catalytic antibacterial therapy. Among the polyvinylpyrrolidone modified single-atomic Co nanozymes with nitrogen coordination numbers of 3 (PSACNZs-N3-C) and 4 (PSACNZs-N4-C), single-atomic Co nanozymes with a coordination number of 2 (PSACNZs-N2-C) had the highest POD-like catalytic activity. Kinetic assays and Density functional theory (DFT) calculations indicated that reducing the coordination number can lower the reaction energy barrier of single-atomic Co nanozymes (PSACNZs-Nx-C), thereby increasing their catalytic performance. In vitro and in vivo antibacterial assays demonstrated that PSACNZs-N2-C had the best antibacterial effect. This study provides proof of concept for enhancing single-atomic catalytic therapy by regulating the coordination number for various biomedical applications, such as tumor therapy and wound disinfection. STATEMENT OF SIGNIFICANCE: The use of nanozymes that contain single-atomic catalytic sites has been shown to effectively promote the healing of bacteria-infected wounds by exhibiting peroxidase-like activity. The homogeneous coordination environment of the catalytic site has been associated with high antimicrobial activity, which provides insight into designing new active structures and understanding their mechanisms of action. In this study, we designed a series of cobalt single-atomic nanozymes (PSACNZs-Nx-C) with different coordination environments by shearing the Co-N bond and modifying polyvinylpyrrolidone (PVP). The synthesized PSACNZs-Nx-C demonstrated enhanced antibacterial activity against both Gram-positive and Gram-negative bacterial strains, and showed good biocompatibility in both in vivo and in vitro experiments.


Asunto(s)
Cobalto , Povidona , Cobalto/farmacología , Peroxidasas/química , Peroxidasa , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/química , Nitrógeno/química
14.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982643

RESUMEN

Three pyrrolidine-derived phenanthroline diamides were studied as ligands for lutetium trinitrate. The structural features of the complexes have been studied using various spectral methods and X-ray. The presence of halogen atoms in the structure of phenanthroline ligands has a significant impact on both the coordination number of lutetium and the number of solvate water molecules in the internal coordination sphere. The stability constants of complexes with La(NO3)3, Nd(NO3)3, Eu(NO3)3, and Lu(NO3)3 were measured to demonstrate higher efficiency of fluorinated ligands. NMR titration was performed for this ligand, and it was found that complexation with lutetium leads to an approximately 13 ppm shift of the corresponding signal in the 19F NMR spectrum. The possibility of formation of a polymeric oxo-complex of this ligand with lutetium nitrate was demonstrated. Experiments on the liquid-liquid extraction of Am(III) and Ln(III) nitrates were carried out to demonstrate advantageous features of chlorinated and fluorinated pyrrolidine diamides.


Asunto(s)
Flúor , Fenantrolinas , Modelos Moleculares , Fenantrolinas/química , Ligandos , Diamida , Lutecio , Fluoruros , Pirrolidinas , Solventes
15.
Environ Sci Technol ; 57(10): 4266-4275, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36849443

RESUMEN

Four-nitrogen-coordinated transitional metal (MN4) configurations in single-atom catalysts (SACs) are broadly recognized as the most efficient active sites in peroxymonosulfate (PMS)-based advanced oxidation processes. However, SACs with a coordination number higher than four are rarely explored, which represents a fundamental missed opportunity for coordination chemistry to boost PMS activation and degradation of recalcitrant organic pollutants. We experimentally and theoretically demonstrate here that five-nitrogen-coordinated Mn (MnN5) sites more effectively activate PMS than MnN4 sites, by facilitating the cleavage of the O-O bond into high-valent Mn(IV)-oxo species with nearly 100% selectivity. The high activity of MnN5 was discerned to be due to the formation of higher-spin-state N5Mn(IV)═O species, which enable efficient two-electron transfer from organics to Mn sites through a lower-energy-barrier pathway. Overall, this work demonstrates the importance of high coordination numbers in SACs for efficient PMS activation and informs the design of next-generation environmental catalysts.


Asunto(s)
Manganeso , Peróxidos , Dominio Catalítico , Manganeso/química , Oxidación-Reducción
16.
ACS Nano ; 17(4): 3786-3796, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36745186

RESUMEN

The new-generation lithium metal batteries require polymer electrolytes with high ionic conductivity and mechanical properties. However, the performance of the polymer electrolytes is severely influenced by the lithium bond formation between the functional groups and lithium ions (Li+), which has barely been considered in the past. Herein, a lithium bond enriched polymer gel (PAEV) is elaborately designed by copolymerizing 4-acryloylmorpholine (ACMO) and 1-vinyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl)imide ([VEIM][TFSI]) in 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) with the presence of LiFSI. The lithium bonds formed between LiFSI and carbonyl groups in PACMO can be regulated by the Li+ coordination number, and further weakened by the hydrogen bonds with [EMIM][TFSI] and poly[VEIM][TFSI], to effectively render the polymer electrolyte with adjustable ionic conductivity and tunable mechanical property. In addition, with the regulated coordination environment of Li+, the LiF and Li3N layer can be uniformly formed on the Li surface to facilitate Li+ nucleation and deposition. As a consequence, the PAEV electrolyte confers the Li/LiFePO4 (LFP) battery with high capacity of 124 mA h g-1 at 1 C under 25 °C, and 152 mA h g-1 under 50 °C. This work can promote the development of high performance polymer electrolyte via lithium bond manipulation.

17.
Materials (Basel) ; 15(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500193

RESUMEN

Compaction is a common ground improvement technique based on the densification of soils for an energy level and optimum water content, mainly influenced by the particle size and curve gradation. Poorly compactable sands, characterized as cohesionless, fine and uniformly graded, are a challenge for earthworks since compaction is not effective due to the lack of a larger range of particle sizes to infill the voids and the compaction energy is not relevant either. These characteristics are common to other materials, i.e., desert sand, industrial or mining by-products or quarry fines, which are mostly discarded to landfill and replaced by proper soils, causing serious environmental issues. To enlarge the technical feasibilities of poorly compactable sands, reducing construction waste and raw material consumption, a mechanical stabilization, based on a repetitive series of recycling and recompaction without binder, is experimentally explored. The behavior observed is also analyzed from reported correlations and a packing particle approach, attending to densification stage, saturation degree, recompaction series, coordination number and packing density. The improvement achieved is moderate and dependent on the cycles applied, showing a characteristic repetitive pattern in the compaction curve, and approaching the estimated minimum void ratio and the theoretical maximum packing possibilities without degradation of the material.

18.
ACS Appl Mater Interfaces ; 14(47): 53213-53227, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36395432

RESUMEN

Predicting and controlling nanostructure formation during nucleation can pave the way to synthesizing novel energy materials via crystallization. However, such control over nucleation and crystallization remains challenging due to an inadequate understanding of critical factors that govern evolving atomistic structures and dynamics. Herein, we utilize coordination number as a reaction coordinate and rate theory to investigate how sodium sulfate, commonly known as a phase-change energy material, nucleates in a supersaturated aqueous solution. In conjunction with ab initio and force field-based molecular dynamics simulation, the rate theoretical analysis reveals that sodium sulfate from an initially dissolved metastable state transits to a heterogeneous mixture of prenucleated clusters and finally to a large cylindrical zigzag morphology. Measurements of Raman spectra and their ab initio modeling confirm that this nucleated morphology contains a few waters for every sulfate. Rate processes such as solvent exchange and desolvation exhibit high sensitivity to the evolving prenucleation/nucleation structures, providing a means to distinguish between critical nucleation precursors. Desolvation and forming the first-shell interionic coordination structure via monomer-by-monomer addition around sulfates are found to explain the formation of large nuclei. Thus, a detailed understanding of the step-by-step structure formation across scales has been achieved. This can be leveraged to predict nucleation-related structures and dynamics and potentially control the synthesis of novel phase-change materials for energy applications.

19.
J Mol Model ; 28(11): 376, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326903

RESUMEN

The effects of varying nanoparticle size; polyethylene glycol (PEG) molecule length, type, and density; and functional groups for drug delivery systems are investigated computationally. A molecular dynamics (MD) study in the framework of a Monte Carlo simulated annealing scheme is done on gold nanoparticles (Au NPs) for sizes of 2.6 nm, 3.4 nm and 6.8 nm. The bonding of PEG molecules is investigated, and the binding energy (BE) is analysed as a reference to chemisorption and physisorption of the molecules. To investigate the frontier molecular orbitals and molecular electrostatic potentials, density functional theory (DFT) simulations are also performed for various PEG lengths and functional groups (FGs). The study reports on three conclusions: firstly, reducing the Au NP size leads to coordination number (CN) loss as the number of lowly coordinated atoms increases with decreasing particle size. Secondly, the stability of the Au-PEG system is independent of length beyond [Formula: see text]. And due to PEG high steric repulsion, the number of these molecules that can be physically adsorbed to the surface is limited. And thirdly, the FGs can be grouped into electron-withdrawing group (-NTA, Biotin, COOH) and electron-donating group (-NH2, OH). In future work, we will study how these conclusions influence the Au drug delivery system toxicity and cellular uptake.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Tamaño de la Partícula
20.
Materials (Basel) ; 15(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36143683

RESUMEN

The talus-like rock mass is a special kind of geomaterial widely distributed in southwestern China, which has induced serious engineering disasters for tunneling engineering. However, the mechanical behavior of the talus-like rock mass remains unclear as the previous studies mainly focused on similar geomaterials such as the soil-rock mixtures. In this paper, we have carried out both experimental and discrete element method (DEM)-based numerical analyses to investigate the shearing characteristics of the talus-like rock mass collected from a real project site. Large-scale direct shear tests reveal that the strength parameters increase with the block content, which is different from the traditional soil-rock mixture. A dependence has been discovered in that the specimen dilation becomes more obvious under lower normal stress and larger block content. It is also observed that higher normal stress is beneficial for crushing blocks. The force chains obtained in the DEM simulations show that distinct internal structures are generated in the rock samples with different block contents. The distribution of coordination number establishes the dependence of fabric stability on block content during shearing. Bond-break evolution reveals the tendencies of crushed particles were consistent with those of experimental tests. The findings provide a more in-depth understanding about the mechanical behavior of the talus-like rock mass, which helps to uncover the cause of the collapse of the real tunnel project.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA