Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Cell Dev Biol ; 10: 916114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133923

RESUMEN

A family of cytosolic copper (Cu) storage proteins (the Csps) bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). The presence of Csp3s in many bacteria appears inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 binds Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis. In the strain lacking BsCsp3 lower BsCotA activity is observed and is unaffected by Cu levels. BsCsp3 loaded with Cu(I) readily activates apo-BsCotA in vitro. Experiments with a high affinity Cu(I) chelator demonstrate that Cu(I) transfer from Cu(I)-BsCsp3 must occur via an associative mechanism. BsCsp3 and BsCotA are both upregulated during late sporulation. We hypothesise that BsCsp3 acquires cuprous ions in the cytosol of B. subtilis for BsCotA.

2.
Mol Ther Methods Clin Dev ; 26: 495-504, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36092366

RESUMEN

Wilson disease (WD) is a genetic disorder of copper homeostasis, caused by deficiency of the copper transporter ATP7B. Gene therapy with recombinant adeno-associated vectors (AAV) holds promises for WD treatment. However, the full-length human ATP7B gene exceeds the limited AAV cargo capacity, hampering the applicability of AAV in this disease context. To overcome this limitation, we designed a dual AAV vector approach using split intein technology. Split inteins catalyze seamless ligation of two separate polypeptides in a highly specific manner. We selected a DnaE intein from Nostoc punctiforme (Npu) that recognizes a specific tripeptide in the human ATP7B coding sequence. We generated two AAVs expressing either the 5'-half of a codon-optimized human ATP7B cDNA followed by the N-terminal Npu DnaE intein or the C-terminal Npu DnaE intein followed by the 3'-half of ATP7B cDNA, under the control of a liver-specific promoter. Intravenous co-injection of the two vectors in wild-type and Atp7b -/- mice resulted in efficient reconstitution of full-length ATP7B protein in the liver. Moreover, Atp7b -/- mice treated with intein-ATP7B vectors were protected from liver damage and showed improvements in copper homeostasis. Taken together, these data demonstrate the efficacy of split intein technology to drive the reconstitution of full-length human ATP7B and to rescue copper-mediated liver damage in Atp7b -/- mice, paving the way to the development of a new gene therapy approach for WD.

3.
Front Med (Lausanne) ; 8: 702312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381801

RESUMEN

Background: Wilson's disease (WD) is a rare condition; its diagnosis is challenging owing to a wide spectrum of ATP7B genotypes and variable clinical phenotypes, along with environmental factors. Few cases of WD with presentation of skin lesions and acute neurovisceral symptoms have been reported in the literature. To our knowledge, this is the first reported case of WD with an uncommon ATP7B gene mutation and rare symptoms of photosensitivity, sensation abnormality, and skin eruption occurring in a 19-year-old woman. Case presentation: We report the case of a 19-year-old woman with WD presenting with liver failure, skin manifestations, and acute neurovisceral symptoms.The rare mutation in intron 1 of ATP7B (c.51+2T > G) was further confirmed by gene sequencing. The patients' symptoms improved after administration of penicillamine and zinc therapy combined with plasma exchange. She received long-term penicillamine treatment, and her liver function was within the normal range at 1 year after discharge. However, she underwent liver transplantation at 1.5 years after discharge. Conclusions: We present a case of WD with a novel ATP7B gene mutation that may serve as a reference to generalists and specialists in hepatology or neurology of the rare clinical characteristics of WD, to prevent misdiagnosis and aid in the early diagnosis and treatment of the condition.

4.
Toxicol Mech Methods ; 30(9): 687-702, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32854553

RESUMEN

Copper storage disease occurs in multiple dog breeds and is one of the most common causes of chronic hepatitis in this species. The disease is caused by hereditary defects in copper metabolism in conjunction with high dietary copper levels. The progressive copper accumulation leads to hepatitis, cirrhosis, and eventually death if left untreated. Copper chelators are critical in modulating the effects of this disease. It is therefore of significant practicality to understand the pharmacokinetic (PK) parameters of chelating agents, particularly since they are oftentimes quite expensive. A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed to measure plasma levels of one of the most common chelators, d-penicillamine. The compound was discovered to exist in two forms, monomeric and dimeric, and various chemical derivatizations were tried to force the compound into one form or the other. Eventually, the simplest approach was individual determination of penicillamine and its dimer, with summation of the two quantities. This enabled determination of canine PK parameters for penicillamine based on comparison of oral and intravenous administration of the drug, including time to maximum drug level (Tmax), concentration at maximum (Cmax), clearance (Cls) and volume of distribution (Vdss). The drug was found to exist predominantly in the dimeric form in plasma, which is incapable of chelating copper owing to lack of free sulfhydryl groups and must therefore provide a storage form of the drug in equilibrium with its monomeric form in vivo. Mechanisms are discussed for the electrospray-induced fragmentation of penicillamine as well as of its dimer.


Asunto(s)
Quelantes/farmacocinética , Cromatografía Liquida , Monitoreo de Drogas , Penicilamina/farmacocinética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Administración Intravenosa , Administración Oral , Animales , Quelantes/administración & dosificación , Perros , Femenino , Masculino , Modelos Biológicos , Penicilamina/administración & dosificación , Penicilamina/sangre , Reproducibilidad de los Resultados
5.
Curr Opin Chem Biol ; 55: 19-25, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31911338

RESUMEN

Synchrotron-based X-ray fluorescence microscopy (XFM) has become an important imaging technique to investigate elemental concentrations and distributions in biological specimens. Advances in technology now permit imaging at resolutions rivaling that of electron microscopy, and researchers can now visualize elemental concentrations in subcellular organelles when using appropriate correlative methods. XFM is an especially valuable tool to determine the distribution of endogenous trace metals that are involved in neurodegenerative diseases. Here, we discuss the latest research on the unusual copper (Cu) storage vesicles that were originally identified in mouse brains and the involvement of Cu in Alzheimer's disease. Finally, we provide an outlook of how future improvements to XFM will drive current trace element research forward.


Asunto(s)
Cobre/análisis , Microscopía Fluorescente/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Factores de Edad , Animales , Cobre/metabolismo , Humanos , Ratones Noqueados , Imagen Óptica , Orgánulos/metabolismo , Tejido Parenquimatoso/metabolismo , Espectrometría por Rayos X , Sincrotrones
6.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450649

RESUMEN

Escherichia coli has a well-characterized copper (Cu) transporting ATPase (CopA) that removes this potentially toxic metal ion from the cytosol. Growth of the strain lacking CopA (ΔcopA) is inhibited above 0.5 mM Cu, whilst a similar effect does not occur in wild type (WT) E. coli until over 2.5 mM Cu. Limited expression of CopA can restore growth to WT levels in ΔcopA E. coli in the presence of Cu. To study the influence of a bacterial cytosolic Cu storage protein (Csp3) on how E. coli handles Cu, the protein from Bacillus subtilis (BsCsp3) has been expressed in the WT and ΔcopA strains. BsCsp3 can protect both strains from Cu toxicity, promoting growth at up to ~1.5 and ~3.5 mM Cu, respectively. Higher levels of Csp3 expression are needed to provide resistance to Cu toxicity in ΔcopA E. coli. At 1.5 mM Cu, BsCsp3 purified from ΔcopA E. coli binds up to approximately four equivalents of Cu(I) per monomer. A similar number of Cu(I) equivalents can be bound by BsCsp3 purified from WT E. coli also grown at 1.5 mM Cu, a concentration that does not cause toxicity in this strain. Much lower amounts of BsCsp3 are produced in WT E. coli grown in the presence of 3.4 mM Cu, but the protein still counteracts toxicity and is almost half loaded with Cu(I). Csp3s can protect E. coli from Cu toxicity by sequestering cuprous ions in the cytosol. This appears to include an ability to acquire and withhold Cu(I) from the main efflux system in a heterologous host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cobre/química , Cobre/toxicidad , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutación , Unión Proteica
7.
Cell Mol Gastroenterol Hepatol ; 7(3): 571-596, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30586623

RESUMEN

BACKGROUND & AIMS: In Wilson disease, ATP7B mutations impair copper excretion into bile. Hepatic copper accumulation may induce mild to moderate chronic liver damage or even acute liver failure. Etiologic factors for this heterogeneous phenotype remain enigmatic. Liver steatosis is a frequent finding in Wilson disease patients, suggesting that impaired copper homeostasis is linked with liver steatosis. Hepatic mitochondrial function is affected negatively both by copper overload and steatosis. Therefore, we addressed the question of whether a steatosis-promoting high-calorie diet aggravates liver damage in Wilson disease via amplified mitochondrial damage. METHODS: Control Atp7b+/- and Wilson disease Atp7b-/- rats were fed either a high-calorie diet (HCD) or a normal diet. Copper chelation using the high-affinity peptide methanobactin was used in HCD-fed Atp7b-/- rats to test for therapeutic reversal of mitochondrial copper damage. RESULTS: In comparison with a normal diet, HCD feeding of Atp7b-/- rats resulted in a markedly earlier onset of clinically apparent hepatic injury. Strongly increased mitochondrial copper accumulation was observed in HCD-fed Atp7b-/- rats, correlating with severe liver injury. Mitochondria presented with massive structural damage, increased H2O2 emergence, and dysfunctional adenosine triphosphate production. Hepatocellular injury presumably was augmented as a result of oxidative stress. Reduction of mitochondrial copper by methanobactin significantly reduced mitochondrial impairment and ameliorated liver damage. CONCLUSIONS: A high-calorie diet severely aggravates hepatic mitochondrial and hepatocellular damage in Wilson disease rats, causing an earlier onset of the disease and enhanced disease progression.


Asunto(s)
Dieta , Degeneración Hepatolenticular/patología , Hígado/patología , Mitocondrias/patología , Animales , Ácidos y Sales Biliares/biosíntesis , Cobre/sangre , ATPasas Transportadoras de Cobre/metabolismo , Progresión de la Enfermedad , Hígado Graso/patología , Femenino , Hepatocitos/patología , Hepatocitos/ultraestructura , Degeneración Hepatolenticular/sangre , Inflamación/patología , Lípidos/biosíntesis , Hígado/metabolismo , Hígado/ultraestructura , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Péptidos/farmacología , Proteoma/metabolismo , Ratas
8.
Chemistry ; 25(1): 74-86, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30281847

RESUMEN

Methanotrophs are remarkable bacteria that utilise large quantities of copper (Cu) to oxidize the potent greenhouse gas methane. To assist in providing the Cu they require for this process some methanotrophs can secrete the Cu-sequestering modified peptide methanobactin. These small molecules bind CuI with very high affinity and crystal structures have given insight into why this is the case, and also how the metal ion may be released within the cell. A much greater proportion of methanotrophs, genomes of which have been sequenced, possess a member of a newly discovered bacterial family of copper storage proteins (the Csps). These are tetramers of four-helix bundles whose cores are lined with Cys residues enabling the binding of large numbers of CuI ions. In methanotrophs, a Csp exported from the cytosol stores CuI for the active site of the ubiquitous enzyme that catalyses the oxidation of methane. The presence of cytosolic Csps, not only in methanotrophs but in a wide range of bacteria, challenges the dogma that these organisms have no requirement for Cu in this location. The properties of the Csps, with an emphasis on CuI binding and the structures of the sites formed, are the primary focus of this review.

9.
J Biol Chem ; 293(13): 4616-4627, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29414794

RESUMEN

Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Metaloproteínas/metabolismo
10.
Angew Chem Int Ed Engl ; 56(30): 8697-8700, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28504850

RESUMEN

Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic-level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4 (S-Cys)4 ] intermediates leading to [Cu4 (S-Cys)5 ]- , [Cu4 (S-Cys)6 ]2- , and [Cu4 (S-Cys)5 (O-Asn)]- clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Complejos de Coordinación/metabolismo , Cobre/metabolismo , Proteínas de Choque Térmico/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Proteínas de Arabidopsis/química , Complejos de Coordinación/química , Cobre/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Compuestos de Sulfhidrilo/química
11.
Curr Mol Med ; 14(8): 959-970, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25323876

RESUMEN

Metabolic ataxias are rare. They usually start in the childhood and often have autosomal recessive inheritance. They may also present in adulthood. The diagnosis is important since some patients may be successfully managed with diet and treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA