Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893840

RESUMEN

Spectroscopic studies (FT-IR, Raman, 1H, and 13C NMR, UV-VIS) of caffeic acid (CFA) and its conjugates, i.e., caftaric acid (CTA), cichoric acid (CA), and cynarin (CY), were carried out. The antioxidant activity of these compounds was determined by a superoxide dismutase (SOD) activity assay and the hydroxyl radical (HO•) inhibition assay. The cytotoxicity of these compounds was performed on DLD-1 cell lines. The molecules were theoretically modeled using the B3LYP-6-311++G(d,p) method. Aromaticity indexes (HOMA, I6, BAC, Aj), HOMO and LUMO orbital energies and reactivity descriptors, NBO electron charge distribution, EPS electrostatic potential maps, and theoretical IR and NMR spectra were calculated for the optimized model systems. The structural features of these compounds were discussed in terms of their biological activities.

2.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445486

RESUMEN

Pharmacological and nutraceutical effects of isoflavones, which include genistein (GE), are attributed to their antioxidant activity protecting cells against carcinogenesis. The knowledge of the oxidation mechanisms of an active substance is crucial to determine its pharmacological properties. The aim of the present work was to explain complex oxidation processes that have been simulated during voltammetric experiments for our new thiolated genistein analog (TGE) that formed the self-assembled monolayer (SAM) on the gold electrode. The thiol linker assured a strong interaction of sulfur nucleophiles with the gold surface. The research comprised of the study of TGE oxidative properties, IR-ATR, and MALDI-TOF measurements of SAM before and after electrochemical oxidation. TGE has been shown to be electrochemically active. It undergoes one irreversible oxidation reaction and one quasi-reversible oxidation reaction in PBS buffer at pH 7.4. The oxidation of TGE results in electroactive products composed likely from TGE conjugates (e.g., trimers) as part of polymer. The electroactive centers of TGE and its oxidation mechanism were discussed using IR supported by quantum chemical and molecular mechanics calculations. Preliminary in-vitro studies indicate that TGE exhibits higher cytotoxic activity towards DU145 human prostate cancer cells and is safer for normal prostate epithelial cells (PNT2) than genistein itself.


Asunto(s)
Anticarcinógenos/farmacología , Antioxidantes/farmacología , Genisteína/farmacología , Oro/química , Compuestos de Sulfhidrilo/química , Anticarcinógenos/química , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Genisteína/química , Humanos , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
3.
Food Chem Toxicol ; 155: 112403, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246707

RESUMEN

As a main metabolite of ginsenosides, compound K (CK) has a vast array of pharmacological effects. However, due to its low polarity and insoluble in water, its oral application has been greatly limited. In this work, the interaction between serum albumin and ginsenoside CK was elucidated by multi-spectroscopic studies. The result of ultraviolet/visible absorption spectroscopy showed that the conformation of serum albumin could be changed via binding with CK. The result of fluorescence spectroscopy suggested that CK could form complex with serum albumin. CK could quench the fluorescence and the fluorescence residues of serum albumin were located in or near the binding position. Molecular docking indicated that CK bound at Sudlow's site II of serum albumin and formed hydrogen-bonding interactions with three residues. Furthermore, the flexible side chain of CK was difficult to be stabilized at the binding site, resulting in its serious perturbation during dynamics simulation. This work also performed the cytotoxic study and the result showed that serum albumin enhanced the inhibitory effect of CK on the proliferation of both Caco-2 and HCT-116 cells. To sum up, this work revealed that serum albumin might be an appropriate carrier of hydrophobic compounds, with the advantage of improving their biocompatibility.


Asunto(s)
Ginsenósidos/metabolismo , Ginsenósidos/toxicidad , Albúmina Sérica Bovina/metabolismo , Animales , Sitios de Unión , Bovinos , Línea Celular Tumoral , Ginsenósidos/química , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
4.
Prog Biomater ; 9(4): 259-275, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33252721

RESUMEN

The present investigation was aimed to synthesize, optimize, and characterize lipid/drug conjugate nanoparticles for delivering 5-fluorouracil (5-FU) to treat brain cancer. The Box-Behnken design was used to optimize the formulation, evaluate the particle size, entrapment efficiency, morphology, in vitro drug release study, and stability profiles. The in vitro performance was executed using cell line studies. The in vivo performance was carried out for pharmacokinetic studies, sterility test, biodistribution studies, and distribution lipid-drug conjugated (LDC) nanoparticles in the brain. Particle size, zeta potential, entrapment efficiency, and morphology of the optimized formulation demonstrated desirable results. In vitro release pattern showed initial fast release, followed by sustained release up to 48 h. Cytotoxic effects of blank stearic acid nanoparticles, LDC nanoparticles, and 5-FU solution on human glioma cell lines U373 MG cell showed more cytotoxicity by LDC-NPs compared to others. The values reported for LDC (AUC = 19.37 ± 0.09 µg/mL h and VD 2.4 ± 0.24 mL) and pure drug (AUC = 8.37 ± 0.04 µg/mL h and VD = 5.24 ± 0.29 mL) indicate higher concentrations of LDC in systemic circulation, while pure 5-FU was found to be largely available in tissue rather than blood circulation. The t1/2 for LDC represents an approximate rise by ninefold, while MRT (12.10 ± 0.44 h) denotes 12-fold rise than pure 5-FU indicating the prolonged circulation of LDC. Free 5-FU concentration in the brain was maximum (5.24 ± 0.01 µg/g) after 3 h, while for the optimized formulation of LDC it was twofold greater estimated as 11.52 ± 0.32 µg/g. In conclusion, the efficiency of 5-FU to treat the brain is increased when it is formulated with LDC nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA