Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Med Res ; 29(1): 447, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218950

RESUMEN

The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.


Asunto(s)
Neoplasias del Sistema Digestivo , ARN Largo no Codificante , Vía de Señalización Wnt , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , Vía de Señalización Wnt/genética , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/metabolismo , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Proliferación Celular/genética
2.
Front Psychol ; 15: 1414528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156806

RESUMEN

Background: Malignant tumors of the digestive system pose a serious threat to human health due to their highly malignant nature. Depression, as the most common psychiatric symptom of digestive system tumors, has attracted much attention regarding its potential relationship with these tumors. A thorough investigation into the connection between digestive system tumors and depression is extremely important for strengthening patients' quality of life and treatment outcomes. Methods: From 2014 to 2023, we conducted a literature search using specific keywords in the Web of Science Core Collection (WoSCC) and performed visual analysis of the selected literature using Microsoft Excel, CiteSpace, and VOSviewer software. In this study, we analyzed countries, institutions, authors, journals, and keywords. Results: A total of 384 research articles on the relationship between digestive system tumors and depression were identified. The number of publications showed a gradual increase over time. In terms of disciplinary distribution, Oncology, Health Care Sciences Services, and Medicine General Internal ranked top in terms of publication volume. In terms of geographical distribution, China and the United States were the countries contributing the most publications. Additionally, Maastricht University contributed the most publications. Regarding authors, Beekman, Aartjan T.F. and Dekker, Joost had the highest number of publications, while Zigmond, A.S. had the most citations. It is worth mentioning that Supportive Care in Cancer was the journal with the most publications in this field. In terms of keyword analysis, research mainly focused on mechanisms and treatment strategies related to the relationship between digestive system tumors and depression. Conclusion: The relationship between digestive system tumors and depression has become a new research hotspot in recent years, offering new directions for future research. This research reveals novel perspectives on comprehending the connection between the two, which can guide future research and practice.

3.
Front Oncol ; 14: 1327154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947888

RESUMEN

Introduction: Type 2 diabetes mellitus (T2DM) was associated with digestive system tumors. We analyzed publicly available data from GWAS studies using Mendelian randomization methods to clarify its causal relationship and mechanisms. Five common digestive system tumors and four diabetes-related phenotypes were included. Methods: Inverse variance weighted method was the main analytical method. Meta-analysis was used to summarize results of multiple data sources. Horizontal pleiotropy was tested using Egger-intercept method and validated by MRPRESSO method. Heterogeneity and sensitivity analysis were conducted by Cochran's Q test and leave-one-out method, respectively. Results: T2DM is associated with a reduced risk of esophageal (OR: 0.77, 95% CI: 0.71 to 0.83, P< 0.001), gastric (OR: 0.87, 95% CI: 0.84 to 0.90, P< 0.001) and colorectal cancer (OR: 0.88, 95% CI: 0.85 to 0.91, P< 0.001) and hepatocellular carcinoma (OR: 0.92, 95% CI: 0.86 to 0.97, P = 0.005) and an increased risk of pancreatic cancer (OR: 1.92, 95% CI: 1.47 to 2.50, P< 0.001) in East Asian population. T2DM causes decreased fasting insulin levels (OR = 0.966, 95% CI: 0.95 to 0.98, P< 0.001) and increased glycated hemoglobin levels (OR=1.41, 95% CI: 1.39 to 1.44, P<0.001). Elevated fasting insulin levels increase the risk of esophageal cancer (OR = 10.35, 95% CI: 1.10 to 97.25, P = 0.041), while increased glycated hemoglobin levels increase pancreatic cancer risk (OR=2.33, 95% CI: 1.37 to 3.97, P=0.002) but decrease gastric cancer risk (OR=0.801, 95% CI: 0.65 to 0.99, P=0.044). Conclusion: T2DM is associated with a reduced risk of esophageal, gastric and colorectal cancer and hepatocellular carcinoma in East Asian populations. The causal relationships between T2DM with esophageal and gastric cancer are partially mediated by decreased fasting insulin and increased glycated hemoglobin levels, respectively. T2DM indirectly increases the risk of pancreatic cancer by increasing glycated hemoglobin levels.

4.
Cancer Cell Int ; 24(1): 246, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010066

RESUMEN

Lactylation, an emerging post-translational modification, plays a pivotal role in the initiation and progression of digestive system tumors. This study presents a comprehensive review of lactylation in digestive system tumors, underscoring its critical involvement in tumor development and progression. By focusing on metabolic reprogramming, modulation of the tumor microenvironment, and the molecular mechanisms regulating tumor progression, the potential of targeting lactylation as a therapeutic strategy is highlighted. The research reveals that lactylation participates in gene expression regulation and cell signaling by affecting the post-translational states of histones and non-histone proteins, thereby influencing metabolic pathways and immune evasion mechanisms in tumor cells. Furthermore, this study assesses the feasibility of lactylation as a therapeutic target, providing insights for clinical treatment of gastrointestinal cancers. Future research should concentrate on elucidating the mechanisms of lactylation, developing efficient lactylation inhibitors, and validating their therapeutic efficacy in clinical trials, which could transform current cancer treatment and immunotherapy approaches. In summary, this review emphasizes the crucial role of lactylation in tumorigenesis and progression through a detailed analysis of its molecular mechanisms and clinical significance.

5.
Front Oncol ; 14: 1365138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590662

RESUMEN

Background: Multiple studies have confirmed the significant role of cathepsins in the development and progression of digestive system tumors. However, further investigation is needed to determine the causal relationships. Methods: We conducted a two-sample bidirectional Mendelian randomization (MR) study using pooled data from a genome-wide association study (GWAS) to assess the causal associations between nine cathepsins (cathepsin B, E, F, G, H, L2, O, S, and Z) and six types of digestive system tumors, including hepatocellular carcinoma (HCC), pancreatic cancer (PCa), biliary tract cancer (BTC), colorectal cancer (CRC), gastric carcinoma (GC), and esophageal cancer (EC). We employed the following methods including inverse variance weighting (IVW), MR-Egger, weighted median (WM), Cochran's Q, MR-PRESSO, MR-Egger intercept test and leave-one-out sensitivity analysis. The STROBE-MR checklist for the reporting of MR studies was used in this study. Results: The risk of HCC increased with high levels of cathepsin G (IVW: p = 0.029, odds ratio (OR) = 1.369, 95% confidence interval (CI) = 1.033-1.814). Similarly, BTC was associated with elevated cathepsin B levels (IVW: p = 0.025, OR = 1.693, 95% CI = 1.070-2.681). Conversely, a reduction in PCa risk was associated with increased cathepsin H levels (IVW: p = 0.027, OR = 0.896, 95% CI = 0.812-0.988). Lastly, high levels of cathepsin L2 were found to lower the risk of CRC (IVW: p = 0.034, OR = 0.814, 95% CI = 0.674-0.985). Conclusion: Our findings confirm the causal relationship between cathepsins and digestive system tumors, which can offer valuable insights for the diagnosis and treatment of digestive system tumors.

6.
Pathol Res Pract ; 257: 155288, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653088

RESUMEN

Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.


Asunto(s)
Vacunas contra el Cáncer , Células Dendríticas , Exosomas , Exosomas/inmunología , Humanos , Células Dendríticas/inmunología , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Neoplasias del Sistema Digestivo/inmunología , Neoplasias del Sistema Digestivo/terapia , Neoplasias del Sistema Digestivo/patología , Animales , Inmunoterapia/métodos
7.
Bioact Mater ; 36: 376-412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544737

RESUMEN

The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.

8.
Pathol Res Pract ; 256: 155268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547773

RESUMEN

Digestive system tumors have been reported in more than 25% of all cancer cases worldwide, bringing a huge burden on the healthcare system. RNA methylation modification-an important post-transcriptional modification-has become an active research area in gene regulation. It is a dynamic and reversible process involving several enzymes, such as methyltransferases, demethylases, and methylation reader proteins. This review provides insights into the role of three major methylation modifications, namely m6A, m5C, and m1A, in the development of digestive system tumors, specifically in the development of tumor immune microenvironment (TIME) of these malignancies. Abnormal methylation modification affects immunosuppression and antitumor immune response by regulating the recruitment of immune cells and the release of immune factors. Understanding the mechanisms by which RNA methylation regulates digestive system tumors will be helpful in exploring new therapeutic targets.


Asunto(s)
Neoplasias del Sistema Digestivo , Neoplasias Gastrointestinales , Humanos , Metilación de ARN , Neoplasias del Sistema Digestivo/genética , Metiltransferasas , Procesamiento Proteico-Postraduccional , Microambiente Tumoral , ARN
9.
Front Cell Dev Biol ; 12: 1343894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389703

RESUMEN

Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.

10.
Cell Commun Signal ; 22(1): 69, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273292

RESUMEN

Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.


Asunto(s)
Neoplasias del Sistema Digestivo , Humanos , Neoplasias del Sistema Digestivo/diagnóstico , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/patología , Daño del ADN
11.
Front Biosci (Landmark Ed) ; 28(11): 297, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38062829

RESUMEN

Toll-like receptor 3 (TLR3) is a prominent member of the Toll-like receptor (TLR) family and has the ability to recognize and bind intracellular double-stranded RNA (dsRNA). Once triggered by a viral infection or other pathological condition, TLR3 activates immune cells and induces the production of interferons and other immune response molecules. Additionally, TLR3 is considered an important immune modulator, as it can regulate cell apoptosis and promote anticancer immunity. The investigation and application of TLR3 agonists in digestive system tumors have attracted widespread attention and are regarded as a promising cancer treatment strategy with potential clinical applications. TLR3 expression levels are generally elevated in most digestive system tumors, and higher TLR3 expression is associated with a better prognosis. Therefore, TLR3 has emerged as a novel therapeutic target for digestive system tumors. It has been used in combination with chemotherapy, radiotherapy, and targeted therapy and demonstrated excellent efficacy and tolerability. This has provided new ideas and hopes for the treatment of digestive system tumors. This review discusses the mechanisms of TLR3 and its frontier research in digestive system tumors.


Asunto(s)
Neoplasias del Sistema Digestivo , Neoplasias Gastrointestinales , Humanos , Neoplasias del Sistema Digestivo/tratamiento farmacológico , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/metabolismo , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , ARN Bicatenario , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/metabolismo , Receptores Toll-Like
12.
Int J Mol Med ; 52(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37539726

RESUMEN

N6­methyladenosine (m6A) RNA methylation is one of the most common post­transcriptional modification mechanism in eukaryotes. m6A is involved in almost all stages of the mRNA life cycle, specifically regulating its stability, splicing, export and translation. Methyltransferase­like 14 (METTL14) is a particularly important m6A methylation 'writer' that can recognize RNA substrates. METTL14 has been documented to improve the activity and catalytic efficiency of METTL3. However, as individual proteins they can also regulate different biological processes. Malignancies in the digestive system are some of the most common malignancies found in humans, which are typically associated with poor prognoses with limited clinical solutions. METTL14­mediated methylation has been implicated in both the potentiation and inhibition of digestive system tumor growth, cell invasion and metastasis, in addition to drug resistance. In the present review, the research progress and regulatory mechanisms of METTL14­mediated methylation in digestive system malignancies were summarized. In addition, future research directions and the potential for its clinical application were examined.


Asunto(s)
Neoplasias del Sistema Digestivo , Neoplasias Gastrointestinales , Humanos , Metilación , Neoplasias del Sistema Digestivo/genética , ARN , Metiltransferasas/genética
13.
Biomed Pharmacother ; 164: 114953, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269812

RESUMEN

Digestive system tumors are huge health problem worldwide, largely attributable to poor dietary choices. The role of RNA modifications in cancer development is an emerging field of research. RNA modifications are associated with the growth and development of various immune cells, which, in turn, regulate the immune response. The majority of RNA modifications are methylation modifications, and the most common type is the N6-methyladenosine (m6A) modification. Here, we reviewed the molecular mechanism of m6A in the immune cells and the role of m6A in the digestive system tumors. However, further studies are required to better understand the role of RNA methylation in human cancers for designing diagnostic and treatment strategies and predicting the prognosis of patients.


Asunto(s)
Neoplasias del Sistema Digestivo , Neoplasias Gastrointestinales , Humanos , Adenosina , Procesamiento Proteico-Postraduccional , ARN , Microambiente Tumoral
14.
Front Immunol ; 14: 1074606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081882

RESUMEN

Programmed cell death (PCD) refers to cell death in a manner that depends on specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis, autophagy and necrosis (programmed necrosis). Among these mechanisms, pyroptosis is mediated by the gasdermin family and is accompanied by inflammatory and immune responses. When pathogens or other danger signals are detected, cytokine action and inflammasomes (cytoplasmic multiprotein complexes) lead to pyroptosis. The relationship between pyroptosis and cancer is complex and the effect of pyroptosis on cancer varies in different tissue and genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and progression; on the other hand, pyroptosis, as a pro-inflammatory death, can promote tumor growth by creating a microenvironment suitable for tumor cell growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in digestive system tumors, such as gastric cancer, pancreatic ductal adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory response inhibits tumor development. The same process occurs in hepatocellular carcinoma and some colorectal cancers. The current review summarizes mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors.


Asunto(s)
Sistema Digestivo , Inflamasomas , Neoplasias , Piroptosis , Humanos , Carcinoma Ductal Pancreático/patología , Sistema Digestivo/patología , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias de la Vesícula Biliar/patología , Inflamasomas/metabolismo , Neoplasias/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias Gástricas/patología , Carcinoma Hepatocelular/patología , Neoplasias Colorrectales/patología
15.
Front Oncol ; 13: 1107532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937448

RESUMEN

According to 2020 global cancer statistics, digestive system tumors (DST) are ranked first in both incidence and mortality. This study systematically investigated the immunologic gene set (IGS) to discover effective diagnostic and prognostic biomarkers. Gene set variation (GSVA) analysis was used to calculate enrichment scores for 4,872 IGSs in patients with digestive system tumors. Using the machine learning algorithm XGBoost to build a classifier that distinguishes between normal samples and cancer samples, it shows high specificity and sensitivity on both the validation set and the overall dataset (area under the receptor operating characteristic curve [AUC]: validation set = 0.993, overall dataset = 0.999). IGS-based digestive system tumor subtypes (IGTS) were constructed using a consistent clustering approach. A risk prediction model was developed using the Least Absolute Shrinkage and Selection Operator (LASSO) method. DST is divided into three subtypes: subtype 1 has the best prognosis, subtype 3 is the second, and subtype 2 is the worst. The prognosis model constructed using nine gene sets can effectively predict prognosis. Prognostic models were significantly associated with tumor mutational burden (TMB), tumor immune microenvironment (TIME), immune checkpoints, and somatic mutations. A composite nomogram was constructed based on the risk score and the patient's clinical information, with a well-fitted calibration curve (AUC = 0.762). We further confirmed the reliability and validity of the diagnostic and prognostic models using other cohorts from the Gene Expression Omnibus database. We identified diagnostic and prognostic models based on IGS that provide a strong basis for early diagnosis and effective treatment of digestive system tumors.

16.
Int J Biol Sci ; 19(4): 1036-1048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923930

RESUMEN

Digestive system tumors include malignancies of the stomach, pancreas, colon, rectum, and the esophagus, and are associated with high morbidity and mortality. Aberrant epigenetic modifications play a vital role in the progression of digestive system tumors. The aberrant transcription of key oncogenes is driven by super-enhancers (SEs), which are characterized by large clusters of enhancers with significantly high density of transcription factors, cofactors, and epigenetic modulatory proteins. The SEs consist of critical epigenetic regulatory elements, which modulate the biological characteristics of digestive system tumors including tumor cell identity and differentiation, tumorigenesis, environmental response, immune response, and chemotherapeutic resistance. The core transcription regulatory loop of the digestive system tumors is complex and a high density of transcription regulatory complexes in the SEs and the crosstalk between SEs and the noncoding RNAs. In this review, we summarized the known characteristics and functions of the SEs in the digestive system tumors. Furthermore, we discuss the oncogenic roles and regulatory mechanisms of SEs in the digestive system tumors. We highlight the role of SE-driven genes, enhancer RNAs (eRNAs), lncRNAs, and miRNAs in the digestive system tumor growth and progression. Finally, we discuss clinical significance of the CRISPR-Cas9 gene editing system and inhibitors of SE-related proteins such as BET and CDK7 as potential cancer therapeutics.


Asunto(s)
Neoplasias del Sistema Digestivo , Elementos de Facilitación Genéticos , Humanos , Factores de Transcripción , Regulación de la Expresión Génica , Oncogenes , Neoplasias del Sistema Digestivo/tratamiento farmacológico , Neoplasias del Sistema Digestivo/genética
17.
Front Mol Biosci ; 10: 1142498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926680

RESUMEN

More than 25% of all malignant tumors are digestive system tumors (DSTs), which mostly include esophageal cancer, gastric cancer, pancreatic cancer, liver cancer, gallbladder cancer and cholangiocarcinoma, and colorectal cancer. DSTs have emerged as one of the prominent reasons of morbidity and death in many nations and areas around the world, posing a serious threat to human life and health. General treatments such as radiotherapy, chemotherapy, and surgical resection can poorly cure the patients and have a bad prognosis. A type of immunotherapy known as oncolytic virus therapy, have recently shown extraordinary anti-tumor effectiveness. One of the viruses that has been the subject of the greatest research in this field, the herpes simplex virus (HSV), has shown excellent potential in DSTs. With a discussion of HSV-1 based on recent studies, we outline the therapeutic effects of HSV on a number of DSTs in this review. Additionally, the critical function of HSV in the detection of cancers is discussed, and some HSV future possibilities are shown.

18.
J Clin Med ; 12(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675647

RESUMEN

An operation in itself is a kind of trauma and may lead to immunosuppression followed by a bounce back. Not many studies exist that describe dynamics of the distribution of peripheral blood (PB) immune cells during the perioperative period. Considering this scarcity, we aggregated the data on the dynamics of immune cells in patients with digestive system resections during the perioperative period and the relationship with short- and long-term prognoses. By the systematic retrieval of documents, we collected perioperative period data on white blood cells (WBC), lymphocytes, neutrophil-lymphocyte ratio (NLR), CD4+ T cells, CD8+ T cells, helper T cells (Th), B cells, natural killer cells (NK), dendritic cells (DCs), regulatory T cells (Tregs), regulatory B cells (Bregs), and Myeloid derived suppressor cells (MDSC). The frequency and distribution of these immune cells and the relationship with the patient's prognosis were summarized. A total of 1916 patients' data were included. Compared with before surgery, WBC, lymphocytes, CD4+ cells, CD8+ T cells, MDSC, and NK cells decreased after surgery, and then returned to preoperative levels. After operation DCs increased, then gradually recovered to the preoperative level. No significant changes were found in B cell levels during the perioperative period. Compared with the preoperative time-point, Tregs and Bregs both increased postoperatively. Only high levels of the preoperative and/or postoperative NLR were found to be related to the patient's prognosis. In summary, the surgery itself can cause changes in peripheral blood immune cells, which might change the immunogenicity. Therefore, the immunosuppression caused by the surgical trauma should be minimized. In oncological patients this might even influence long-term results.

19.
Eur J Nucl Med Mol Imaging ; 50(3): 908-920, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36326867

RESUMEN

PURPOSE: Digestive system tumors are a group of tumors with high incidence in the world nowadays. The assessment of digestive system tumor metastasis by conventional imaging seems to be unsatisfactory. [68Ga]Ga-FAPI, which has emerged in recent years, seems to be able to evaluate digestive system tumor metastasis. We aimed to summarize the current evidence of [68Ga]Ga-FAPI PET/CT or PET/MR for the assessment of primary tumors, lymph node metastases, and distant metastases in digestive system tumors. Besides, we also aimed to perform a meta-analysis of the sensitivity of [68Ga]Ga-FAPI PET diagnosis to discriminate between digestive system tumors, primary lesions, and non-primary lesions (lymph node metastases and distant metastases). MATERIALS AND METHODS: PubMed, MEDLINE and Cochrane Library databases were searched from the beginning of the database build to August 12, 2022. All studies undergoing [68Ga]Ga-FAPI PET for the evaluation of digestive tumors were included in the screening and review. Screening and full text review was performed by 3 investigators and data extraction was performed by 2 investigators. Risk of bias was examined with the QUADAS-2 criteria. Diagnostic test meta-analysis was performed with a random-effects model. RESULTS: A total of 541 studies were retrieved. Finally, 22 studies were selected for the systematic review and 18 studies were included in the meta-analysis. In the 18 publications, a total of 524 patients with digestive system tumors, 459 primary tumor lesions of digestive system tumors, and 1921 metastatic lesions of digestive system tumors were included in the meta-analysis. Based on patients, the sensitivity of [68Ga]Ga-FAPI PET for the diagnosis of digestive system tumors was 0.98 (95% CI: 0.94-0.99). Based on lesions, the sensitivity of [68Ga]Ga-FAPI PET for the diagnostic evaluation of primary tumor lesions of the digestive system was 0.97 (95% CI: 0.93-0.99); the sensitivity of [68Ga]Ga-FAPI PET for the diagnostic evaluation of non-primary lesions (lymph node metastases and distant metastases) of the digestive system tumors was 0.94 (95% CI: 0.79-0.99). CONCLUSION: [68Ga]Ga-FAPI PET has high accuracy and its sensitivity is at a high level for the diagnostic evaluation of digestive system tumors. Clinicians, nuclear medicine physicians, and radiologists may consider using [68Ga]Ga-FAPI PET/CT or PET/MR in the evaluation of primary tumors, lymph node metastases, and distant metastases in digestive system tumors.


Asunto(s)
Neoplasias del Sistema Digestivo , Neoplasias Gastrointestinales , Quinolinas , Humanos , Radioisótopos de Galio , Metástasis Linfática/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias del Sistema Digestivo/diagnóstico por imagen , Fluorodesoxiglucosa F18
20.
View (Beijing) ; 4(6)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38179181

RESUMEN

Radiomics aims to develop novel biomarkers and provide relevant deeper subvisual information about pathology, immunophenotype, and tumor microenvironment. It uses automated or semiautomated quantitative analysis of high-dimensional images to improve characterization, diagnosis, and prognosis. Recent years have seen a rapid increase in radiomics applications in nuclear medicine, leading to some promising research results in digestive system oncology, which have been driven by big data analysis and the development of artificial intelligence. Although radiomics advances one step further toward the non-invasive precision medical analysis, it is still a step away from clinical application and faces many challenges. This review article summarizes the available literature on digestive system tumors regarding radiomics in nuclear medicine. First, we describe the workflow and steps involved in radiomics analysis. Subsequently, we discuss the progress in clinical application regarding the utilization of radiomics for distinguishing between various diseases and evaluating their prognosis, and demonstrate how radiomics advances this field. Finally, we offer our viewpoint on how the field can progress by addressing the challenges facing clinical implementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA