Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 463(Pt 4): 141494, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366095

RESUMEN

An innovative method for carbendazim (CBZ) detection was developed, consisting of an electrochemical-fluorescence dual-mode biosensor based on magneto-fluorescent composite M-CDs. M-CDs, as the fluorescent probe of this sensor, could combine the electrical signal-ferrocene to achieve the "signal switching" by specifically recognizing CBZ through aptamers, of which magnetic property was used to quickly separate from complex substrates without interference. The dual-mode sensor based on M-CDs demonstrated excellent linear responses in both electrochemical and fluorescence assays. It achieved detection ranges of 10 fg/mL - 300 ng/mL and 60 fg/mL - 100 ng/mL with detection limits (LODs) of 1.4 fg/mL and 2.3 fg/mL. The sensor exhibited exceptional detection performance, stability and anti-interference. In addition, the results of the sensor in actual samples were consistent with those of enzyme-linked immunosorbent assay (ELISA), which further demonstrated that the sensor could accurately trace detecting CBZ in real samples and had a certain application prospect.

2.
Mikrochim Acta ; 191(11): 666, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400731

RESUMEN

CuO nanoparticles with good water solubility and uniform particle size were successfully prepared. Interestingly, the oxidase-like activity of CuO NPs was continuously enhanced by the addition of thiourea (TU), and the enzyme activity was further enhanced by the addition of aluminum ion (Al3+). By systematically exploring and optimizing the experimental conditions, including the key parameters such as temperature, reaction time, and pH, a fluorescence-colorimetric dual-mode sensing system based on CuO nanoparticles was constructed. The detection range of TU and Al3+ were 1-100 µM and 1-100 µM, respectively, and the selectivity and precision of detection were further improved. In addition, the catalytic mechanism of CuO NPs as oxidase-like catalysts and the specific process in the reaction were investigated. Finally, the nano-sensing system was successfully applied to the analysis of three real environmental samples, namely, tap water, lake water and river water, which provided an effective new strategy for the future development of nano-sensing technology for TU and Al3+.

3.
Anal Chim Acta ; 1329: 343232, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39396295

RESUMEN

BACKGROUND: The progress of modern research is constantly fueled by the convergence of multiple technologies. Despite the enormous potential of both fluorescence (FL) and photoelectrochemical (PEC) technologies, the development of synergistic PEC-FL sensing platforms that combine the advantages of both is still in its early stages due to their relatively recent inception. Hydrogen sulfide (H2S), possessing dual irritant and asphyxiating traits, poses challenges for environmental preservation and human health. The development of the PEC-FL detection methodology for H2S in complex environmental settings is imperative. RESULTS: Combining FL and PEC sensing techniques, this work presented a new concept of photoinduced electron-transfer (PET) effect grafting for dual-mode fluorescence and PEC analysis. Briefly, a well-designed fluorescent molecule (BTFM-DNP) featuring the PET effect was synthesized and implemented to modulate the photoelectric response of the indium tin oxide (ITO)/BiOI photocathode electrode. After reacting with H2S, the thiolysis of dinitrophenyl ether eliminated the intramolecular PET effect and recovered the significant fluorescence of the probe. Remarkably, the newly formed 2,4-dinitrobenzenethiol (DBT) with strong electron-withdrawing groups was then grafted to the ITO/BiOI photoelectrode and achieved the successful transfer of the PET process, resulting in a sharp decrease in photocurrent. The as-developed dual-mode protocol exhibited good performance in terms of ultra-sensitivity, high selectivity, fast response, and a wide detection range from 1 pM to 80 µM. SIGNIFICANCE: The newly developed PEC-FL sensing platform can be applied to detect H2S levels in both the environment and food. This study demonstrates a promising synergy between fluorescent probes and PEC sensors, offering a novel perspective on the advancement of multi-mode analysis techniques. This approach has the potential to significantly enhance detection accuracy and reliability.

4.
Anal Chim Acta ; 1329: 343254, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39396313

RESUMEN

BACKGROUND: Aptasensors have been extensively utilized in target detection due to their advantages of high sensitivity and fast response. However, the reliability of the detection results of the single-mode aptasensor cannot be verified in time. Developing efficient detection methods with cross-validation capability is beneficial to achieving highly reliable detection. This study aims to design a colorimetric and fluorescent dual-mode aptasensor by skillfully engineering G-quadruplex assembly and rolling circle amplification for highly reliable IFN-γ detection. RESULTS: The complexes of anti-IFN-γ aptamers and complement sequences (cDNA) were modified on the magnetic beads. In the presence of IFN-γ, the preferential combination of aptamers with IFN-γ resulted in the release of cDNAs. The cDNAs were collected by magnetic separation and then used as primers to trigger rolling circle amplification reaction to generate enriched G-quadruplexes. The G-quadruplex could be utilized to combine with hemin to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine for colormetric mode or to couple with the fluorogenic dye Thioflavin T for fluorescent mode. The developed dual-mode aptasensor displayed a linear range of 1-10000 pM with a detection limit of 0.406 pM for the colormetric mode and a range of 0.1-10000 pM with a detection limit of 0.037 pM for the fluorescent mode. Further, the designed aptasensor was applied to IFN-γ detection in serum samples and achieved satisfactory recoveries. SIGNIFICANCE: This innovative dual-mode detection strategy skillfully leverages the effective target-binding ability of aptamer, dual-function of the G-quadruplex and the signal amplifying ability of rolling circle amplification. This approach not only provides a reliable testing tool for the detection of IFN-γ, but also promotes the development of multimode sensing platforms.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorimetría , G-Cuádruplex , Interferón gamma , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Aptámeros de Nucleótidos/química , Interferón gamma/sangre , Interferón gamma/análisis , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos , Colorimetría/métodos , Colorantes Fluorescentes/química , Bencidinas/química , Benzotiazoles/química
5.
J Colloid Interface Sci ; 678(Pt C): 430-440, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39303561

RESUMEN

While spatial and time-resolved anti-counterfeiting technologies have gained increasing attention owing to their excellent tunable photoluminescence, achieving high-security-level anti-counterfeiting remains a challenge. Herein, we developed a spatial-time-dual-resolved anti-counterfeiting system using zero-dimensional (0D) organic-inorganic Mn(II) metal halides: (EMMZ)2MnBr4 (named M-1, EMMZ=1-Ethyl-3-Methylimidazolium Bromide) and (EDMMZ)2MnBr4 (named M-2, EDMMZ=1-Ethyl-2,3-Dimethylimidazolium Bromide). M-1 shows a bright green emission with a quantum yield of 78 %. It undergoes a phase transformation from the crystalline to molten state with phosphorescence quenching at 350 K. Reversible phase and luminescent conversion was observed after cooling down for 15 s. Notably, M-2 exhibits green light emission similar to M-1 but undergoes phase conversion and phosphorescence quenching at 390 K, with reversible conversion observed after cooling down for 5 s. The photoluminescence switching mode of on(green)-off-on(green) can be achieved by temperature control, demonstrating excellent performance with short response times and ultra-high cyclic reversibility. By leveraging the different quenching temperatures and reversible PL conversion times of M-1 and M-2, we propose a spatial-time-dual-resolved photoluminescence (PL) switching system that combines M-1 and M-2. This system enables multi-fold tuning of the PL switch for encryption and decryption through cationic engineering strategies by modulating temperature and cooling time. This work presents a novel and feasible design strategy for advanced-level anti-counterfeiting technology based on a spatial-time-dual-resolved system.

6.
Food Chem ; 463(Pt 3): 141370, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39316911

RESUMEN

Mycotoxin contamination currently poses a significant concern and presents a major challenge to global food safety management. In this research, gold­silver nanoclusters (Au-AgNCs) were utilized as platforms for electrogenerated chemiluminescence (ECL) and electrochemical (EC) responses, while polyaniline-coated cobalt tetraoxide and gold (PANI@Co3O4/AuNPs) served as bifunctional probes with intelligently modulated light/electric signals to develop a dual mode adaptor sensor for sensitive detection of alternariol (AOH). The sensor's benefits are evident in three areas:(1) Bandgap modulation allows Au-Ag to exhibit enhanced light/electric response;(2) PANI@Co3O4/AuNPs exhibit both ECL quenching effects and the capability to activate KHSO5, along with improved electrical conductivity, which collectively improves the sensor's detection performance;(3) The dual-channel signal outputs significantly reduce the risk of false detections. Testing results indicated that the ECL and EC sensors performed exceptionally well across AOH concentration ranges of 0.001-100 ng/mL and 0.01-1000 ng/mL, with detection limit of 0.803 pg/mL and 0.378 pg/mL, respectively.

7.
J Pharm Anal ; 14(9): 100928, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39345942

RESUMEN

The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T-cell-mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual-modality imaging to give real-time tracking and feedback on treatment.

8.
Talanta ; 280: 126785, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217709

RESUMEN

In the present research, Fe-based metal-organic frameworks (MIL-101(Fe)-NH2) nanoparticles were synthesized by simple solvothermal methods and used to assay Cr(Ⅵ). The MIL-101(Fe)-NH2 performs dual functions: the 2-aminoterephthalic acid (NH2-BDC) ligand endows a strong fluorescence emission, and the Fe metal nodes are able to facilitate the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB) directly, resulting in the generation of oxidized-TMB (ox-TMB). Our research results showed that reducing agents such as ascorbic acid (AA) can collapse the structures of MIL-101(Fe)-NH2 because of the reduction of Fe3+ by AA, resulting in release of NH2-BDC. In the presence of Cr(Ⅵ), the fluorescence intensity of the MIL-101(Fe)-NH2 + AA system will be decreased due to the competitive reduction of Fe3+ and Cr(Ⅵ). Nevertheless, Cr(Ⅵ) can significantly accelerate the oxidation of TMB by MIL-101(Fe)-NH2 as it boosts the electron transfer rate between Fe3+ and Fe2+. Therefore, a fluorescent/colorimetric dual-mode platform was developed for the detection of Cr(Ⅵ) with an extensive linear range (7.5-750 µg/L and 13.3-1000 µg/L) as well as a remarkably low detection limit (0.99 µg/L and 1.98 µg/L). This MOF with the ability to release ligands not only provides inspiration for the design of new luminescent materials, but also offers a novel and reliable solution for the detection of Cr(Ⅵ).


Asunto(s)
Cromo , Colorimetría , Colorantes Fluorescentes , Estructuras Metalorgánicas , Cromo/análisis , Cromo/química , Estructuras Metalorgánicas/química , Colorantes Fluorescentes/química , Colorimetría/métodos , Límite de Detección , Bencidinas/química , Oxidación-Reducción , Hierro/química , Espectrometría de Fluorescencia/métodos , Peroxidasa/química , Peroxidasa/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
9.
Bioelectrochemistry ; 161: 108822, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39326347

RESUMEN

α-Fetoprotein (AFP) is widely recognized as an important marker for monitoring hepatocellular carcinoma (HCC), and its monitoring using two different transduction mechanisms is an effective way to avoid the risk of false positives or false negatives. In this paper, Au@Cu/Cu2O-rGO was used as a photothermal converter as well as an actuator to promote the decomposition of hydrogen peroxide (H2O2), which was further designed as a probe for dual-mode detection to quantitatively assess AFP. The composite nanomaterials possessed photothermal conversion efficiencies (η) of up to 54.9 % and catalytically generated signals up to 1.6 times greater, relative to a single material. Based on the generated temperature and current signals, AFP has been sensitively detected in the range of 0.01-100 ng/mL, with limits of detection (LOD) of 5.62 pg/mL and 1.23 pg/mL, respectively. The dual-mode assay combines portability with high accuracy for the detection of human health systems.

10.
Food Chem ; 463(Pt 3): 141375, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39332369

RESUMEN

Mercury ions (Hg2+) are highly toxic heavy metals that are commonly found in natural environments. Owning to their non-biodegradability and accumulation in the food chain, the precise detection of trace amounts of Hg2+ is essential for preventing chronic accumulation and ensuring food safety. In this study, we present a dual-mode paper sensor for simultaneous colorimetric and Surface-Enhanced Raman Spectroscopy (SERS) detection of Hg2+ in tea, achieving ultrasensitive, rapid, and on-site screening. 4-Mercaptopyridine (4-MPY) was effectively chemisorbed onto the gold nanoparticles (AuNPs), acting as a signal probe for colorimetric methods. Moreover, it can produce plasmonic hot spots for SERS by interacting with the pyridine ring. To enhance the signal intensity of both colorimetry and SERS, a silver shell is in-situ grown on the surface of AuNPs captured on the paper sensor by reduction of Ag+, achieving signal amplification. The visual limit of detection (LOD) for the colorimetric biosensor is 2.5 pM, while the LOD of SERS is 0.48 pM with this dual-mode paper sensor. The sensitivity of both the colorimetric method and SERS was improved by approximately 200 and 500 times, respectively, with the designed signal amplification strategy. The system allows for multiple parallel screening of the same sample, ensuring accurate results without any false-positive or false-negative. This study provides a valuable platform for the accurate detection of various other heavy metal ions and provides effective strategies for improving the performance of colorimetric methods.

11.
Entropy (Basel) ; 26(9)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39330126

RESUMEN

The existing lattice-based cut-and-choose oblivious transfer protocol is constructed based on the learning-with-errors (LWE) problem, which generally has the problem of inefficiency. An efficient cut-and-choose oblivious transfer protocol is proposed based on the difficult module-learning-with-errors (MLWE) problem. Compression and decompression techniques are introduced in the LWE-based dual-mode encryption system to improve it to an MLWE-based dual-mode encryption framework, which is applied to the protocol as an intermediate scheme. Subsequently, the security and efficiency of the protocol are analysed, and the security of the protocol can be reduced to the shortest independent vector problem (SIVP) on the lattice, which is resistant to quantum attacks. Since the whole protocol relies on the polynomial ring of elements to perform operations, the efficiency of polynomial modulo multiplication can be improved by using fast Fourier transform (FFT). Finally, this paper compares the protocol with an LWE-based protocol in terms of computational and communication complexities. The analysis results show that the protocol reduces the computation and communication overheads by at least a factor of n while maintaining the optimal number of communication rounds under malicious adversary attacks.

12.
Biomed Eng Lett ; 14(5): 1125-1135, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39220033

RESUMEN

Dual-mode optical imaging can simultaneously provide morphological and functional information. Furthermore, it can be integrated with projection mapping method to directly observe the images in the region of interest. This study was aimed to develop a dual-mode optical projection mapping system (DOPMS) that obtains laser speckle contrast image (LSCI) and subcutaneous vein image (SVI) and projects onto the region of interest, minimizing the spatial misalignment between the regions captured by the camera and projected by a projector. In in vitro and in vivo studies, LSCI and SVI were obtained and projected under single-mode illumination, where either the laser or light-emitting diode (LED) was activated, and under dual-mode illumination, where the laser and LED were activated simultaneously. In addition, fusion image (FI) of LSCI and SVI was implemented to selectively observe blood perfusion in the vein. DOPMS successfully obtained LSCI, SVI, and FI and projected them onto the identical region of interest, minimizing spatial misalignment. Single-mode illumination resulted in relatively clearer and noise-free images. Dual-mode illumination introduced speckle noise to SVI and FI but enabled real-time imaging by simultaneously employing LSCI, SVI, and FI. FI may be more effective for quasi-static evaluations before and after treatment under single-mode illumination and for real-time evaluation during treatment under dual-mode illumination owing to its faster image processing, albeit with a potential tradeoff in image quality.

13.
Anal Chim Acta ; 1324: 343116, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218569

RESUMEN

BACKGROUND: Salmonella Typhimurium poses a serious threat to human health worldwide, necessitating the development of a rapid, sensitive, and convenient method for S. Typhimurium detection. Nanozymes are considered ideal signal report elements, which are extensively used for developing colorimetric methods. However, single-component nanozymes display low catalytic activity, and colorimetric methods are susceptible to environmental interference, reducing the sensitivity and accuracy of detection results. To address these drawbacks, this study constructed a dual-mode composite nanozyme-based cascade colorimetric-fluorescence aptasensor for S. Typhimurium detection in food. RESULTS: In this study, the composite Fe3O4@MIL-100(Fe) nanozymes were successful synthesized and demonstrated substantial peroxide-like activity, with 4.76-fold higher specificity activity (SA) than that of Fe3O4 nanozymes. Then, a glucose oxidase (GOx)-Fe3O4@MIL-100(Fe) cascade reaction was developed for colorimetric detection via an aptamer to facilitate the formation of Fe3O4@MIL-100(Fe)/S. Typhimurium/carboxylated g-C3N4 (CCN)-GOx sandwich complexes. Meanwhile, the fluorescence mode was achieved by measuring the fluorescence intensity of the sandwich complexes. In optimum conditions, the dual-mode detection limits (LOD) were 1.8 CFU/mL (colorimetric mode) and 1.2 CFU/mL (fluorescence mode), respectively, with the S. Typhimurium concentration ranging from 10 CFU/mL to 107 CFU/mL. Finally, the feasibility of the dual-mode colorimetric-fluorescence method was validated via three actual samples, yielding recovery rates of 77.32 % to91.17 % and 82.17 % to 103.7 %, respectively. SIGNIFICANCE AND NOVELTY: This study successfully develops a composite nanozyme-based cascade colorimetric and fluorescence dual-mode aptasensor for S. Typhimurium detection. It presents several distinct benefits, such as a broader linear range (10-107 CFU/mL), a lower LOD value (1.2 CFU/mL), and more accurate results. More importantly, the proposed dual-mode method displays a low LOD in colorimetric mode, demonstrating considerable potential for S. Typhimurium on-site detection in food.


Asunto(s)
Aptámeros de Nucleótidos , Colorimetría , Salmonella typhimurium , Salmonella typhimurium/aislamiento & purificación , Colorimetría/métodos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección , Fluorescencia , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Estructuras Metalorgánicas/química , Espectrometría de Fluorescencia
14.
Food Res Int ; 195: 114986, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277248

RESUMEN

The comprehensive determination of fatty acids without derivatization, including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs), is a big challenge but powerful for lipidomics in biology, food, and environment. Herein, the dual mode unity solid-phase microextraction (DMU-SPME) combined with gas chromatography-flame ionization detector (GC-FID) or mass spectrometry (MS) was proposed as a powerful method for the determination of comprehensive free fatty acids in real samples. Under the optimized DMU-SPME conditions, the proposed method has good linearity (R2 ≥ 0.994) and low limits of determination (0.01-0.14 mg/L). In the stability analysis, the intra-day relative standard deviation was 1.39-12.43 %, and the inter-day relative standard deviation was 2.84-10.79 %. The recoveries of selected 10 fatty acids in real samples ranged from 90.18 % to 110.75 %, indicating that the method has good accuracy. Fatty acids ranging from C2 to C22 were detected in real samples by the untargeted determination method of DMU-SPME combined with gas chromatography-mass spectrometry (GC-MS). The DMU-SPME method proposed in this study can be used for lipid metabolism analysis and free fatty acid determination in the fields of biology, food, and environment.


Asunto(s)
Ácidos Grasos , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Microextracción en Fase Sólida/métodos , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ionización de Llama/métodos , Reproducibilidad de los Resultados , Animales , Análisis de los Alimentos/métodos , Cromatografía de Gases/métodos , Ácidos Grasos no Esterificados/análisis
15.
Talanta ; 281: 126815, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241648

RESUMEN

Salmonella enteritidis (SE) is a food-borne pathogens that can cause acute gastroenteritis. With the increasing social attention to food safety, the detection method of SE has attracted wide attention. In response to the demand for efficient detection methods of SE, this study constructed a novel dual-mode photoelectrochemical-electrochemical (PEC-EC) aptamer-based biosensor. The sensor was constructed using Bi4NbO8Cl/In2S3 heterojunction as the electrode substrate material, the hybridization chain reaction (HCR) and dye sensitization were used as the signal amplification strategies. Bi4NbO8Cl/In2S3 heterojunction could provide an excellent initial photocurrent response for the sensing platform, and the HCR was opened by the end of complementary DNA (cDNA) and generated an ultra-long DNA double-stranded (dsDNA) "super structure" on the surface of the electrode, which could be embedded with a large number of methylene blue (MB) as the bifunctional probes. Thus, dual-mode output was achieved via the PEC and EC activity of MB. Under the optimized conditions, the PEC and EC signal responses of the system were linear to the logarithm of SE concentration in a range from 1.5 × 102 CFU/mL to 1.5 × 107 CFU/mL. The detection limits were found to be 12.9 CFU/mL and 12.3 CFU/mL using the PEC and EC methods, respectively. The constructed dual-mode biosensor exhibited good performance for real sample analysis, and demonstrated great application potential in the field of SE rapid detection. Moreover, this dual-mode detection strategy provided more accurate and reliable results than the single-mode output.

16.
Chemosphere ; 364: 143171, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182729

RESUMEN

A fluorescent-colorimetric dual-signal platform, N, S co-doped carbon dots functionalized silver nanoparticles (NS-CDs-AgNPs), was designed in situ by reducing AgNO3 in the presence of N, S co-doped carbon dots (NS-CDs) under the assistance of microwave irradiation for glucose determination. With the formation of silver nanoparticles (AgNPs), the intrinsic fluorescence of NS-CDs was quenched, showing the fluorescence state was off. Whereas the fluorescence of NS-CDs can be switched on when a trace amount of H2O2 was added. Based on this novel phenomenon, the peroxidase-like activity of NS-CDs-AgNPs by using 3,3',5,5'-tetramethylbenzidine (TMB) chromogen and H2O2 as substrates was evaluated. The Km values of the prepared probe for H2O2 and TMB were 0.84 mM and 0.01 mM with the Vm of 6.65 × 10-8 M S-1 and 3.01 × 10-8 M S-1, respectively. The results showed that NS-CDs-AgNPs had good peroxidase-like activity and strong affinity to TMB and H2O2. It confirmed that there is a redox interaction between AgNPs and H2O2, and H2O2 can oxidize Ag to produce Ag+, which is the main reason that the fluorescence of NS-CDs-AgNPs can be activated by H2O2. The hydroxyl radical (·OH) was formed in the process of reaction, which can further oxidize TMB for color reaction. Meanwhile, glucose can be oxidized to produce H2O2 in the presence of glucose oxidase (GOx). Based on the phenomenon, a fluorimetric and colorimetric dual-mode sensor for glucose detection was established. Satisfactory results were obtained with the linear range of 0.1-80 µM for fluorimetric mode and 0.5-5 µM for colorimetric mode, respectively. Additionally, the LOD was below 0.32 µM and 0.21 µM, respectively. The method was successfully applied to determine the glucose in human serum with satisfactory recovery and RSD.


Asunto(s)
Carbono , Colorimetría , Glucosa , Peróxido de Hidrógeno , Nanopartículas del Metal , Puntos Cuánticos , Plata , Plata/química , Colorimetría/métodos , Nanopartículas del Metal/química , Carbono/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Glucosa/análisis , Puntos Cuánticos/química , Fluorometría/métodos , Nitrógeno/química , Límite de Detección , Azufre/química , Bencidinas/química , Técnicas Biosensibles/métodos , Oxidación-Reducción
17.
Biosens Bioelectron ; 264: 116678, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154508

RESUMEN

The opportunistic human pathogen Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat to human health, causing sepsis, inflammation, and pneumonia, so it is crucial to devise an expeditious detection platform for the P. aeruginosa. In this work, bis (2- (3, 5- dimethylphenyl) quinoline- C2, N') (acetylacetonato) iridium (III) Ir (dmpq)2 (acac) with excellent electrochemiluminescence (ECL) and fluorescence (FL) and magnetic nanoparticles were encapsulated in silica spheres. The luminescent units exhibited equal ECL and FL properties compared with single iridium complexes, and enabled rapid separation, which was of vital significance for the establishment of biosensors with effective detection. In addition, the luminescent units were further reacted with the DNA with quenching units to obtain the signal units, and the ECL/FL dual-mode biosensor was employed with the CRISPR/Cas12a system to further improve its specific recognition ability. The ECL detection linear range of as-proposed biosensor in this work was 100 fM-10 nM with the detection limit of 73 fM (S/N = 3), and FL detection linear range was 1 pM-10 nM with the detection limit of 0.126 pM (S/N = 3). Importantly, the proposed dual-mode biosensor exhibited excellent repeatability and stability in the detection of P. aeruginosa in real samples, underscoring its potential as an alternative strategy for infection prevention and safeguarding public health and safety in the future.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Iridio , Límite de Detección , Mediciones Luminiscentes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/genética , Técnicas Biosensibles/métodos , Iridio/química , Humanos , Técnicas Electroquímicas/métodos , Infecciones por Pseudomonas/diagnóstico , Infecciones por Pseudomonas/microbiología , Nanopartículas de Magnetita/química , Fluorescencia , Complejos de Coordinación/química
18.
Talanta ; 279: 126653, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098239

RESUMEN

Patulin (PAT) is a mycotoxin-produced secondary metabolite that can contaminate foods, causing toxic effects on animal and human health. Therefore, for the first time, we have constructed a "turn-on" dual-mode aptamer sensor for PAT using oleic acid-coated upconversion nanomaterials (OA-UCNPs) and G-Quadruplex-hemin DNAzyme (G4-DNAzyme) as fluorescent and colorimetry probes. The sensor employs aptamers binding to PAT as recognition elements for specific molecule detection. Mxene-Au can be used as a biological inducer to assist OA-UCNPs in controlling fluorescence intensity. In addition, colorimetric signal amplification was performed using the trivalent G4-DNAzyme to increase detection sensitivity and reduce false positives. Under optimal conditions, the dual-mode aptasensor has a detection limit of 5.3 pg mL-1 in fluorescence and 2.4 pg mL-1 in colorimetric methods, respectively, with the wider linear range and limit of detection (LOD) of the colorimetric assay. The combination aptasensor can detect PAT with high sensitivity and high specificity and has broad application prospects in the field of food safety detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Hemina , Patulina , Patulina/análisis , Aptámeros de Nucleótidos/química , ADN Catalítico/química , Técnicas Biosensibles/métodos , Hemina/química , Colorimetría/métodos , Límite de Detección , Nanoestructuras/química
19.
Bioelectrochemistry ; 160: 108786, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39111272

RESUMEN

MicroRNA, as a distinctive biomarker, plays a crucial role in the early prognosis and diagnosis of numerous severe diseases. However, due to its inherent properties such as low abundance, small size, and high sequence similarity, the sensitive and accurate detection of microRNA remains a major challenge. Herein, a dual-mode electrochemical biosensing platform was developed for microRNA detection, based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposite. The GO-Fe3O4/PEDOT composite demonstrated a porous microstructure, outstanding conductivity, and robust catalytic activity towards nitrite. It was electrodeposited onto the electrode surface in a one-step process using the cyclic voltammetry method (CV). The microRNA biosensor was obtained by anchoring DNA with amino groups to the GO-Fe3O4/PEDOT layer through the formation of amide bonds. The designed dual-mode microRNA biosensor demonstrated a broad linear range spanning from 10-15 M to 10-6 M, with low detection limits of 5.18 × 10-15 M and 7.36 × 10-15 M when using chronocoulometry (CC) and amperometric i-t curve (i-t) modes, respectively. Furthermore, a dual-mode electrochemical biosensor has been successfully developed and utilized for the detection of microRNA in human serum, demonstrating its potential for precise and sensitive microRNA detection and its practical application value in clinical medicine.


Asunto(s)
Técnicas Biosensibles , Compuestos Bicíclicos Heterocíclicos con Puentes , Técnicas Electroquímicas , Grafito , Límite de Detección , MicroARNs , Nanocompuestos , Polímeros , MicroARNs/sangre , MicroARNs/análisis , Técnicas Biosensibles/métodos , Nanocompuestos/química , Grafito/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química , Técnicas Electroquímicas/métodos , Humanos
20.
Biosens Bioelectron ; 263: 116619, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094291

RESUMEN

Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.


Asunto(s)
Técnicas Biosensibles , ADN , Oro , Nanopartículas del Metal , MicroARNs , Espectrometría Raman , Humanos , Técnicas Biosensibles/métodos , MicroARNs/análisis , Oro/química , Espectrometría Raman/métodos , Nanopartículas del Metal/química , ADN/química , Neoplasias , Línea Celular Tumoral , Límite de Detección , Hibridación de Ácido Nucleico , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA