Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.399
Filtrar
Más filtros

Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383329

RESUMEN

Leather is a product that has been used for millennia. While it is a natural material, its production raises serious environmental and ethical concerns. To mitigate those, the engineering of sustainable biobased leather substitutes has become a trend over the past few years. Among the biobased materials, mycelium, the fungal "root" of a mushroom, is one of the promising alternatives to animal leather, as a material with tunable physicomechanical properties. Understanding the effect of humidity on mycelium-based leather material properties is essential to the production of durable, competitive, and sustainable leather products. To this end, we measured the water sorption isotherms on several samples of mycelium-based leather materials and investigated the effects of water sorption on their elastic properties. The ultrasonic pulse transmission method was used to measure the wave speed through the materials while measuring their sorption isotherms at different humidity levels. Additionally, the material's properties were mechanically tested by performing uniaxial tensile tests under ambient and immersed conditions. An overall reduction in elastic moduli was observed during both absorption and immersion. The changes in the measured longitudinal modulus during water sorption reveal changes in the elasticity of the test materials. The observed irreversible variation of the longitudinal modulus during the initial water sorption can be related to the material production process and the presence of various additives that affect the mechanical properties of the leather materials. Our results presented here should be of interest to material science experts developing a new generation of sustainable leather products.

2.
ACS Nano ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353083

RESUMEN

3D printing of a flexible polyurethane elastomer is highly demandable for its potential to revolutionize industries ranging from footwear to soft robotics thanks to its exceptional design flexibility and elasticity performance. Nevertheless, conventional methods like fused deposition modeling (FDM) and vat photopolymerization (VPP) polyurethane 3D printing typically limit material options to thermoplastic or photocurable polyurethanes. In this research, a water-borne polyurethane ink was synthesized for direct ink writing (DIW) 3D printing through the incorporation of cellulose nanofibrils (CNFs), enabling direct printing of complex, monolithic elastomeric structures at room temperature that can maintain the designed structure. Additionally, a solvent-induced fast solidification (SIFS) method was introduced to facilitate room-temperature curing and enhance mechanical properties. The 3D-printed WPU structures demonstrated strong interfacial adhesion, exhibiting high ultimate tensile strength of up to 22 MPa and an elongation at break of 951%. The 3D-printed WPU structures also demonstrated outstanding resilience and durability, capable of enduring more than 100 cycles of compression and tension as well as withstanding vehicle crushing and heavy lifting. This method also shows suitability for 3D printing complex structures such as a vase and an octopus.

3.
J Leukoc Biol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365278

RESUMEN

Galectins constitute a family of soluble lectins with unique capacity to induce macroscale rearrangements upon interacting with cell membrane glycoconjugates. Galectin-8 (Gal-8) is acknowledged for its role in facilitating antigen uptake and processing upon engaging with cell surface glycoconjugates on antigen-presenting cells (APCs). Gal-8 consists of two covalently fused N- and C-terminal carbohydrate recognition domains (N- and C-CRD), each exhibiting distinct glycan specificity. In this study, we utilized single N- and C-CRD recombinant proteins to dissect the nature of Gal-8-glycan interactions during antigen internalization enhancement. Single C-CRD was able to replicate the effect of full-length Gal-8 (FLGal-8) on antigen internalization in BMDCs. Antigen uptake enhancement was diminished in the presence of lactose or when N-glycosylation-deficient macrophages served as APCs, underscoring the significance of glycan recognition. Measurement of the elastic modulus using Atomic Force Microscopy unveiled that FLGal-8- and C-CRD-stimulated macrophages exhibited heightened membrane stiffness compared to untreated cells, providing a plausible mechanism for their involvement in endocytosis. C-CRD proved to be as efficient as FLGal-8 in promoting antigen degradation, suggesting its implication in antigen-processing induction. Lastly, C-CRD was able to replicate FLGal-8-induced antigen presentation in the MHC-II context both in vitro and in vivo. Our findings support the notion that Gal-8 binds through its C-CRD to cell surface N-glycans, thereby altering membrane mechanical forces conducive to soluble antigen endocytosis, processing, and presentation to cognate CD4 T-cells. These findings contribute to a deeper comprehension of Gal-8 and its mechanisms of action, paving the way for the development of more efficacious immunotherapies.

4.
Ultrasonography ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39370860

RESUMEN

PURPOSE: Internal cervical os (ICO) stiffness is related to menstrual pain, a key symptom of endometriosis. The study evaluated whether women with endometriosis have a stiffer ICO than unaffected women. METHODS: A retrospective cross-sectional analysis was conducted using prospectively collected data from women with and without endometriosis, spanning from June 2020 to September 2022. Endometriosis was diagnosed through clinical and ultrasound evaluations, with histological confirmation in a subset of participants. Strain elastography (SE) was employed to measure tissue elasticity in four cervical regions of interest: the ICO and the anterior, posterior, and middle cervical compartments (ACC, PCC, and MCC, respectively). Tissue elasticity was quantified using a color-based scoring system ranging from 0.1 (blue, indicating less elasticity) to 3.0 (red, indicating greater elasticity). RESULTS: Overall, 287 women were included, with 157 diagnosed with endometriosis and 130 controls. On SE, women with endometriosis exhibited a lower color score (mean±standard deviation), indicating lower elasticity, for the ICO (0.56±0.28 vs. 0.70±0.26, P=0.001) and PCC (0.69±0.30 vs. 0.80±0.27, P=0.002). Additionally, they had a lower ICO/MCC ratio (0.45±0.28 vs. 0.60±0.32, P=0.001) and ICO/ACC ratio (0.68±0.42 vs. 0.85±0.39, P=0.001). Multiple logistic regression analysis revealed that endometriosis was associated with the ICO color score (odds ratio, 0.053; 95% confidence interval, 0.014 to 0.202; R2=0.358; P=0.001), even after adjusting for confounding factors like the presence of myomas (P=0.040) and the use of hormonal therapy (P=0.001). The results were corroborated in women with histologically confirmed endometriosis (n=71). CONCLUSION: The findings suggest a potential relationship between a stiffer ICO and endometriosis.

5.
J Int Soc Sports Nutr ; 21(1): 2410426, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39350604

RESUMEN

BACKGROUND: Vitamin D is associated with vascular function; however, the impact of different vitamin D levels on vascular elasticity following prolonged exercise remains uncertain. The primary objective of this study was to investigate the association of vitamin D levels with changes in peripheral pulse wave velocity (pPWV) and the magnitude of acute post-exercise hypotension (PEH) following prolonged endurance exercise in healthy young men. METHODS: All the participants were divided into two groups: the 25-hydroxyvitamin D (25(OH)D) sufficiency group (25(OH)D ≧50 nmol/L) and the deficiency group (25(OH)D < 50 nmol/L). A cardiopulmonary exercise test for maximal oxygen uptake (V.O2max) was performed on the graded cycling. The prolonged exercise was set at 60% V.O2max for 120 min of continuous riding on a stationary bicycle. The pPWV and blood pressure were measured at baseline and 0, 15, 30, 45, 60 min after prolonged endurance exercise. RESULTS: Post hoc analysis revealed that the vitamin D sufficient group had a greater magnitude of PEH than the deficiency group at post-45 min. Multiple linear regression analyses showed a significant correlation between 25(OH)D and both pPWV (p = 0.036) and PEH (p = 0.007), after adjusting for V.O2max, weight, height, and physical activity. In addition, the 25(OH)D deficiency group also had higher pPWV at post-15 min (5.41 ± 0.93 vs 4.84 ± 0.75 m/s), post-30 min (5.30 ± 0.77 vs 4.87 ± 0.50 m/s), post-45 min (5.56 ± 0.93 vs 5.05 ± 0.68 m/s) than the sufficiency group. CONCLUSIONS: There was a positive correlation between 25(OH)D levels and systolic PEH following prolonged endurance exercise. Individuals with sufficient 25(OH)D status may have better vascular elasticity and more efficient blood pressure regulation during exercise.


Asunto(s)
Resistencia Física , Hipotensión Posejercicio , Análisis de la Onda del Pulso , Rigidez Vascular , Deficiencia de Vitamina D , Vitamina D , Humanos , Masculino , Rigidez Vascular/fisiología , Deficiencia de Vitamina D/complicaciones , Adulto Joven , Vitamina D/sangre , Vitamina D/análogos & derivados , Resistencia Física/fisiología , Hipotensión Posejercicio/fisiopatología , Hipotensión Posejercicio/etiología , Presión Sanguínea , Prueba de Esfuerzo , Adulto , Ejercicio Físico/fisiología , Consumo de Oxígeno
6.
Carbohydr Polym ; 345: 122599, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227116

RESUMEN

Uncontrolled hemorrhage stands as the primary cause of potentially preventable deaths following traumatic injuries in both civilian and military populations. Addressing this critical medical need requires the development of a hemostatic material with rapid hemostatic performance and biosafety. This work describes the engineering of a chitosan-based cryogel construct using thermo-assisted cross-linking with α-ketoglutaric acid after freeze-drying. The resulting cryogel exhibited a highly interconnected macro-porous structure with low thermal conductivity, exceptional mechanical properties, and great fluid absorption capacity. Notably, assessments using rabbit whole blood in vitro, as well as rat liver volume defect and femoral artery injury models simulating severe bleeding, showed the remarkable hemostatic performance of the chitosan cryogel. Among the cryogel variants with different chitosan molecular weights, the 150 kDa one demonstrated superior hemostatic efficacy, reducing blood loss and hemostasis time by approximately 73 % and 63 % in the hepatic model, and by around 60 % and 68 %, in the femoral artery model. Additionally, comprehensive in vitro and in vivo evaluations underscored the good biocompatibility of the chitosan cryogel. Taken together, these results strongly indicate that the designed chitosan cryogel configuration holds significant potential as a safe and rapid hemostatic material for managing severe hemorrhage.


Asunto(s)
Quitosano , Criogeles , Hemorragia , Hemostáticos , Quitosano/química , Quitosano/farmacología , Criogeles/química , Animales , Conejos , Hemorragia/terapia , Hemorragia/tratamiento farmacológico , Hemostáticos/química , Hemostáticos/farmacología , Ratas , Masculino , Ratas Sprague-Dawley , Arteria Femoral/lesiones , Porosidad , Hígado/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reactivos de Enlaces Cruzados/química , Hemostasis/efectos de los fármacos
7.
Open Res Eur ; 4: 98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224434

RESUMEN

Background: Large elastic deformations of gravitating cylindrical bodies play a significant role in everyday life. On the other hand, tiny such deformations are relevant for state-of-the art experiments, as they affect the physical properties of materials under consideration, impacting wave propagation. This is of key importance for a recently planned experiment to explore the influence of the gravitational field on entangled photons propagating in waveguides. The purpose of this work is to determine this influence. Methods: We use the methods of linear elasticity, including thermoelasticity, to determine the stresses and strains of the medium. For this, the symmetry of the cylinder allows us to solve the problem by using Mitchell's solutions of the equations satisfied by the Airy functions. The boundary conditions are implemented by an approximation of the Hertz contact method. Results: We calculate the displacements, the stresses and strains for several classes of boundary conditions, and give explicit solutions for a number of physically motivated configurations. The influence of the resulting deformations on the planned GRAVITES experiment is determined. Conclusions: The results are relevant for fiber interferometry experiments sensitive to the effects of the gravitational field on photon propagation. Our calculations give stringent bounds on the environmental variables, which need to be controlled in such experiments.

8.
Rev Bras Ortop (Sao Paulo) ; 59(4): e556-e563, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39239578

RESUMEN

Objective To analyze the mechanical properties of the patellar (PT) and semitendinosus (ST) tendons from fresh-frozen human cadavers from a tissue bank using supersonic shear-wave imaging (SSI) elastography and tensile tests. Methods We tested seven PT and five ST samples on a traction machine and performed their simultaneous assessment through SSI. The measurements enabled the comparison of the mechanical behavior of the tendons using the stress x strain curve and shear modulus (µ) at rest. In addition, we analyzed the stress x µ relationship under tension and tested the relationship between these parameters. The statistical analysis of the results used unpaired t -tests with Welch correction, the Pearson correlation, and linear regression for the Young modulus (E) estimation. Results The µ values for the PT and ST at rest were of 58.86 ± 5.226 kPa and 124.3 ± 7.231 kPa respectively, and this difference was statistically significant. The correlation coefficient between stress and µ for the PT and ST was very strong. The calculated E for the PT and ST was of 19.97 kPa and 124.8 kPa respectively, with a statistically significant difference. Conclusion The ST was stiffer than the PT in the traction tests and SSI evaluations. The µ value was directly related to the stress imposed on the tendon. Clinical relevance The present is an evaluation of the mechanical properties of the tendons most used as grafts in knee ligament reconstruction surgeries.

9.
Front Sports Act Living ; 6: 1453730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267811

RESUMEN

The aim of this research was to evaluate the reliability of the measurements of biomechanical parameters of the muscles of athletes representing different disciplines as well as untrained people. Ninety-four young, healthy male individuals participated in the study and were divided into five subgroups: footballers (n = 25), volleyballers (n = 14), handballers (n = 19), MMA fighters (n = 16), and undrained group (n = 20). All of the participants underwent measurements of stiffness (S), muscle tone (T) and elasticity (E) by two independent measurers using MyotonPro equipment. Analysis was conducted on two different parts of the quadriceps femoris: rectus femoris (RF) and vastus medialis (VM. Consequently, the comprehensive analysis comprised 564 measurements (94 participants * 3 parameters = 282 * 2 measurers = 564). The results proves high reliability of the myotonometry (Pearson's CC over 0.8208-0.8871 for different parameters, ICC from to 0.74 to 0.99 for different muscles and parameters) excluding only stiffness for the VM which was characterized withlow ICC of 0.08 and relatively highest between the examined parameters MAE% of 8.7% which still remains low value. The most significant differences between the parameters in examined groups were observed between MMA fighters and volleyballers in terms of muscle tone and elasticity of the VM (correlation of 0.14842 and 0.15083 respecitively). These results confirm the usability of myotonometry in measuring the biomechanical properties of the muscles in different sports groups and confirm the independence of the results obtained from the person performing the measurement.

10.
Heliyon ; 10(16): e36489, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253143

RESUMEN

The accurate evaluation of the effective mechanical properties of composites mainly depends on the characteristics of representative volume elements (RVEs). This paper mainly investigates the RVE size. Additionally, the effect of volume fraction of reinforcement, the edge effect, and RVE types on the critical size are discussed. First, the Al/Ni multilayered composites were processed by nine cycles of the cross-accumulative roll bonding (CARB) method. Then, one type of RVEs was created based on cross-sectional micrographs of composites to consider their inhomogeneities. Another type was generated by using the random sequential adsorption (RSA) procedure. Thereafter, the homogenized effective elastic properties of both types of microstructure-based RVEs and RSA-based RVEs were computed and compared as a function of the volume fraction of Ni and RVE size. The results showed that by increasing the Ni fragments, the RVEs indicated stiffer elastic behavior. By increasing the volume fraction of Ni from 0.2 Vf to 0.8 Vf, the Poisson ratio decreased by 7 % and the elastic modulus increased by 83 % for RSA-based RVE. Regarding the size of microstructure-based RVE of Al/Ni (0.8 Vf), from the largest size (size 1) with a length of 575 µm and a width of 575 µm to the smallest size (size 5) with a length of 287.5 µm and a width of 287.5 µm, the elastic modulus and the Poisson ratio showed 16 % and 0.8 % decrease, respectively.

11.
Materials (Basel) ; 17(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274604

RESUMEN

The main concern with concrete at high temperatures is loss of strength and explosive spalling, which are more pronounced in high-strength concretes, such as Ultra-High Performance Concrete (UHPC). The use of polymeric fibers in the mixture helps control chipping, increasing porosity and reducing internal water vapor pressure, but their addition can impact its mechanical properties and workability. This study evaluated the physical and mechanical properties of UHPC with metallic and PVA fibers under high temperatures using a 23 central composite factorial design. The consistency of fresh UHPC and the compressive strength and elasticity modulus of hardened UHPC were measured. Above 300 °C, both compressive strength and elasticity modulus decreased drastically. Although the addition of PVA fibers reduced fluidity, it decreased the loss of compressive strength after exposure to high temperatures. The response surface indicates that the ideal mixture-1.65% steel fiber and 0.50% PVA fiber-achieved the highest compressive strength, both at room temperature and at high temperatures. However, PVA fibers did not protect UHPC against explosive spalling at the levels used in this research.

12.
Materials (Basel) ; 17(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274681

RESUMEN

The current development of dental materials aims to improve their properties and expand their clinical application. New flowable bulk-fill composites have been released which, unlike what was previously common in this material category, are intended to be used alone and without a top layer, in various cavities. The study compares their kinetic of light transmission during monomer-to-polymer conversion on a laboratory-grade spectrometer, as well as their elastoplastic and aging behavior under simulated clinical conditions. Major differences in the kinetic of light transmission was observed, which is related to the degree of mismatch between the refractive indices of filler and polymer matrix during polymerization and/or the type of initiator used. Compared to the literature data, the kinetic of light transmission do not always correlate with the kinetic of functional group conversion, and therefore should not be used to assess polymerization quality or to determine an appropriate exposure time. Furthermore, the initial mechanical properties are directly related to the volumetric amount of filler, but degradation during aging must be considered as a multifactorial event.

13.
Sci Rep ; 14(1): 21689, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289400

RESUMEN

The present paper introduces the development of dynamic stiffness method for analyzing small-scale sandwich functionally graded nanoplates resting on elastic foundation in thermal environments. The mathematical formulation is based on classical plate theory in conjunction with nonlocal elasticity theory. The governing equation is derived using Hamilton's principle. The dynamic stiffness matrix is obtained through the application of the Levy displacement approach and assembled to form the global stiffness matrix. The final matrix is solved for natural frequency of the plates using the Wittrick-Williams algorithm. The proposed methodology is validated against existing literature, demonstrating a strong agreement. Various parametric studies explore the effects of thermal environments, volume fraction index, sandwich configurations, elastic foundation characteristics, nonlocal parameter and boundary conditions. The results show the versatility of the proposed approach in addressing small scaled complex engineering structures. This research significantly contributes to the understanding and analysis of sandwich functionally graded nanoplates, providing valuable insights for applications in aerospace, structural systems, sensors, actuators, and energy harvesting devices.

14.
Comput Biol Med ; 182: 109106, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241326

RESUMEN

Learning using privileged information (LUPI) has shown its effectiveness to improve the B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) by transferring knowledge from the elasticity ultrasound (EUS). However, LUPI only performs transfer learning between the paired data with shared labels, and cannot handle the scenario of modality imbalance. In order to conduct the supervised transfer learning between the paired ultrasound data together with the additional single-modal BUS images, a novel multi-view LUPI algorithm with Dual-Level Modality Completion, named DLMC-LUPI, is proposed to improve the performance of BUS-based CAD. The DLMC-LUPI implements both image-level and feature-level (dual-level) completions of missing EUS modality, and then performs multi-view LUPI for knowledge transfer. Specifically, in the dual-level modality completion stage, a variational autoencoder (VAE) model for feature generation and a novel generative adversarial network (VAE-based GAN) model for image generation are sequentially trained. The proposed VAE-based GAN can improve the synthesis quality of EUS images by adopting the features generated by VAE from the BUS images as the model constrain to make the features generated from the synthesized EUS images more similar to them. In the multi-view LUPI stage, two feature vectors are generated from the real or pseudo images as two source domains, and then fed them to the multi-view support vector machine plus classifier for model training. The experiments on two ultrasound datasets indicate that the DLMC-LUPI outperforms all the compared algorithms, and it can effectively improve the performance of single-modal BUS-based CAD.

15.
Adv Healthc Mater ; : e2400827, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263787

RESUMEN

Reversible adhesives for wound care improve patient experiences by permitting reuse and minimizing further tissue injury. Existing reversible bandages are vulnerable to water and can undergo unwanted deformation during removal and readdressing procedures. Here, a biocompatible, multilayered, reversible wound dressing film that conforms to skin and is waterproof is designed. The inner layer is capable of instant adhesion to various substrates upon activation of the dynamic boronic ester bonds by water; intermediate hydrogel layer and outer silicone backing layer can enhance the dressing's elasticity and load distribution for adhesion, and the silicone outer layer protects the dressing from exposure to water. The adhesive layer is found to be biocompatible with mouse skin. Skin injuries on the mouse skin heal more rapidly with the film compared to no dressing controls. Evaluations of the film on skin of freshly euthanized minipigs corroborate the findings in the mouse model. The film remains attached to skins without delamination despite subjecting to various degrees of deformation. Exposure to water softens the film to allow removal from the skin without pulling any hair off. The multilayered design considers soft mechanics in each layer and will offer new insights to improve wound dressing performance and patient comfort.

16.
Sensors (Basel) ; 24(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39338729

RESUMEN

Optimizing the regeneration process of surgically created anastomoses (blood vessels, intestines, nerves) is an important topic in surgical research. One of the most interesting parameter groups is related to the biomechanical properties of the anastomoses. Depending on the regeneration process and its influencing factors, tensile strength and other biomechanical features may change during the healing process. Related to the optimal specimen size, the range and accuracy of measurements, and applicability, we have developed a custom-tailored microcontroller-based device. In this paper, we describe the hardware and software configuration of the latest version of the device, including experiences and comparative measurements of tensile strength and elasticity of artificial materials and biopreparate tissue samples. The machine we developed was made up of easily obtainable parts and can be easily reproduced on a low budget. The basic device can apply a force of up to 40 newtons, and can grasp a 0.05-1 cm wide, 0.05-1 cm thick tissue. The length of the test piece on the rail should be between 0.3 and 5 cm. Low production cost, ease of use, and detailed data recording make it a useful tool for experimental surgical research.


Asunto(s)
Anastomosis Quirúrgica , Elasticidad , Intestinos , Resistencia a la Tracción , Intestinos/fisiología , Anastomosis Quirúrgica/instrumentación , Regeneración/fisiología , Animales , Humanos , Vasos Sanguíneos/fisiología , Fenómenos Biomecánicos/fisiología
17.
Cancers (Basel) ; 16(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39335137

RESUMEN

Diabetes greatly reduces the survival rates in breast cancer patients due to chemoresistance and metastasis. Reorganization of the cytoskeleton is crucial to cell migration and metastasis. Regulatory cytoskeletal protein kinases such as the Rho kinase (ROCK) and focal adhesion kinase (FAK) play a key role in cell mobility and have been shown to be affected in cancer. It is hypothesized that diabetes/high-glucose conditions alter the cytoskeletal structure and, thus, the elasticity of breast cancer cells through the ROCK and FAK pathway, which can cause rapid metastasis of cancer. The aim of the study was to investigate the role of potential mediators that affect the morphology of cancer cells in diabetes, thus leading to aggressive cancer. Breast cancer cells (MDA-MB-231 and MCF-7) were treated with 5 mM glucose (low glucose) or 25 mM glucose (high glucose) in the presence of Rho kinase inhibitor (Y-27632, 10 mM) or FAK inhibitor (10 mM). Cell morphology and elasticity were monitored using atomic force microscopy (AFM), and actin staining was performed by fluorescence microscopy. For comparative study, normal mammary breast epithelial cells (MCF-10A) were used. It was observed that high-glucose treatments modified the cytoskeleton of the cells, as observed through AFM and fluorescence microscopy, and significantly reduced the elasticity of the cells. Blocking the ROCK or FAK pathway diminished the high-glucose effects. These changes were more evident in the breast cancer cells as compared to the normal cells. This study improves the knowledge on the cytoarchitecture properties of diabetic breast cancer cells and provides potential pathways that can be targeted to prevent such effects.

18.
Animals (Basel) ; 14(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39335279

RESUMEN

The large yellow croaker (LYC, Larimichthys crocea) is highly regarded for its delicious taste and unique flavor. The gut microbiota has the ability to affect the host muscle performance and elasticity by regulating nutrient metabolism. The purpose of this study is to establish the relationship between muscle quality and intestinal flora in order to provide reference for the improvement of the muscle elasticity of LYC. In this study, the intestinal contents of high muscle elasticity males (IEHM), females (IEHF), and low muscle elasticity males (IELM) and females (IELF) were collected and subjected to metagenomic and metabolomic analyses. Metagenomic sequencing results showed that the intestinal flora structures of LYCs with different muscle elasticities were significantly different. The abundance of Streptophyta in the IELM (24.63%) and IELF (29.68%) groups was significantly higher than that in the IEHM and IEHF groups. The abundance of Vibrio scophthalmi (66.66%) in the IEHF group was the highest. Based on metabolomic analysis by liquid chromatograph-mass spectrometry, 107 differentially abundant metabolites were identified between the IEHM and IELM groups, and 100 differentially abundant metabolites were identified between the IEHF and IELF groups. Based on these metabolites, a large number of enriched metabolic pathways related to muscle elasticity were identified. Significant differences in the intestinal metabolism between groups with different muscle elasticities were identified. Moreover, the model of the relationship between the intestinal flora and metabolites was constructed, and the molecular mechanism of intestinal flora regulation of the nutrient metabolism was further revealed. The results help to understand the molecular mechanism of different muscle elasticities of LYC and provide an important reference for the study of the mechanism of the effects of LYC intestinal symbiotic bacteria on muscle development, and the development and application of probiotics in LYC.

19.
Acta Biomater ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303831

RESUMEN

The evolution of arterial biomechanics and microstructure with age and disease plays a critical role in understanding the health and function of the cardiovascular system. Accurately capturing these adaptative processes and their effects on the mechanical environment is critical for predicting arterial responses. This challenge is exacerbated by the significant differences between elastic and muscular arteries, which have different structural organizations and functional demands. In this study, we aim to shed light to these adaptive processes by comparing the viscoelastic mechanics of autologous thoracic aortas (TA) and femoropopliteal arteries (FPA) in different age groups. We have extended our fractional viscoelastic framework, originally developed for FPA, to both types of arteries. To evaluate this framework, we analyzed experimental mechanical data from TA and FPA specimens from 21 individuals aged 13 to 73 years. Each specimen was subjected to a multi-ratio biaxial mechanical extension and relaxation test complemented by bidirectional histology to quantify the structural density and microstructural orientations. Our new constitutive model accurately captured the mechanical responses and microstructural differences of the tissues and closely matched the experimentally measured densities. It was found that the viscoelastic properties of collagen and smooth muscle cells (SMCs) in both the FPA and TA remained consistent with age, but the viscoelasticity of the SMCs in the FPA was twice that of the TA. Additionally, changes in collagen nonlinearity with age were similar in both TA and FPA. This model provides valuable insights into arterial mechanophysiology and the effects of pathological conditions on vascular biomechanics. STATEMENT OF SIGNIFICANCE: Developing durable treatments for arterial diseases necessitates a deeper understanding of how mechanical properties evolve with age in response to mechanical environments. In this work, we developed a generalized viscoelastic constitutive model for both elastic and muscular arteries and analyzed both the thoracic aorta (TA) and the femoropopliteal artery (FPA) from 21 donors aged 13 to 73. The derived parameters correlate well with histology, allowing further examination of how viscoelasticity evolves with age. Correlation between the TA and FPA of the same donors suggest that the viscoelasticity of the FPA may be influenced by the TA, necessitating more detailed analysis. In summary, our new model proves to be a valuable tool for studying arterial mechanophysiology and exploring pathological impacts.

20.
Nano Lett ; 24(38): 11954-11959, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39269787

RESUMEN

Intercalation of several elements (Ag, Bi, In, Mo, Os, Pd, Pt, Rh, Ru, Sb, and W) is used to chemically alter a wide range of properties of two-dimensional layered α-MoO3. Intercalation modifies acoustic phonons and elastic constants, as measured with Brillouin scattering. Intercalation alters electronic bandgaps, color, structure, Raman shifts, and electron binding energies. Optical chemochromism is demonstrated with intercalants changing the color of MoO3 from transparent to brilliant blue (In, Mo, Os, and Ru) and orange (Ag). Correlations are investigated among material properties. There is evidence that in-plane longitudinal stiffness c11 correlates with changes in the bandgap, while various Raman modes appear to be connected to a variety of properties, including shear modulus c55, Mo binding energies, lattice constants, and the preferred crystal structure of the intercalant. The results indicate a surprising degree of complexity, suggesting competition among multiple distinct mechanisms and interactions involving specific intercalant species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA