Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 24(10): e14050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37248800

RESUMEN

To investigate the difference of the fluence map optimization (FMO) and Stochastic platform optimization (SPO) algorithm in a newly-introduced treatment planning system (TPS). METHODS: 34 cervical cancer patients with definitive radiation were retrospectively analyzed. Each patient has four plans: FMO with fixed jaw plans (FMO-FJ) and no fixed jaw plans (FMO-NFJ); SPO with fixed jaw plans (SPO-FJ) and no fixed jaw plans (SPO-NFJ). Dosimetric parameters, Modulation Complexity Score (MCS), Gamma Pass Rate (GPR) and delivery time were analyzed among the four plans. RESULTS: For target coverage, SPO-FJ plans are the best ones (P ≤ 0.00). FMO plans are better than SPO-NFJ plans (P ≤ 0.00). For OARs sparing, SPO-FJ plans are better than FMO plans for mostly OARs (P ≤ 0.04). Additionally, SPO-FJ plans are better than SPO-NFJ plans (P ≤ 0.02), except for rectum V45Gy. Compared to SPO-NFJ plans, the FMO plans delivered less dose to bladder, rectum, colon V40Gy and pelvic bone V40Gy (P ≤ 0.04). Meanwhile, the SPO-NFJ plans showed superiority in MU, delivery time, MCS and GPR in all plans. In terms of delivery time and MCS, the SPO-FJ plans are better than FMO plans. FMO-FJ plans are better than FMO-NFJ plans in delivery efficiency. MCSs are strongly correlated with PCTV length, which are negatively with PCTV length (P ≤ 0.03). The delivery time and MUs of the four plans are strongly correlated (P ≤ 0.02). Comparing plans with fixed or no fixed jaw in two algorithms, no difference was found in FMO plans in target coverage and minor difference in Kidney_L Dmean, Mu and delivery time between PCTV width≤15.5 cm group and >15.5 cm group. For SPO plans, SPO-FJ plans showed more superiority in target coverage and OARs sparing than the SPO-NFJ plans in the two groups. CONCLUSIONS: SPO-FJ plans showed superiority in target coverage and OARs sparing, as well as higher delivery efficiency in the four plans.


Asunto(s)
Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/radioterapia , Estudios Retrospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Órganos en Riesgo
2.
J Cancer Ther ; 5(2): 198-207, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25506501

RESUMEN

Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA