Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Front Immunol ; 15: 1418594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975337

RESUMEN

Introduction: Maternal synbiotic supplementation during pregnancy and lactation can significantly influence the immune system. Prebiotics and probiotics have a positive impact on the immune system by preventing or ameliorating among others intestinal disorders. This study focused on the immunomodulatory effects of B. breve M-16V and short chain galacto-oligosaccharides (scGOS)/long chain fructo-oligosachairdes (lcFOS), including systemic and mucosal compartments and milk composition. Methods: Lewis rats were orally administered with the synbiotic or vehicle during pregnancy (21 days) and lactation (21 days). At the weaning day, small intestine (SI), mammary gland (MG), adipose tissue, milk, mesenteric lymph nodes (MLN), salivary gland (SG), feces and cecal content were collected from the mothers. Results: The immunoglobulinome profile showed increased IgG2c in plasma and milk, as well as elevated sIgA in feces at weaning. The supplementation improved lipid metabolism through enhanced brown adipose tissue activity and reinforced the intestinal barrier by increasing the expression of Muc3, Cldn4, and Ocln. The higher production of short chain fatty acids in the cecum and increased Bifidobacterium counts suggest a potential positive impact on the gastrointestinal tract. Discussion: These findings indicate that maternal synbiotic supplementation during gestation and lactation improves their immunological status and improved milk composition.


Asunto(s)
Bifidobacterium breve , Lactancia , Leche , Oligosacáridos , Animales , Femenino , Embarazo , Bifidobacterium breve/inmunología , Leche/inmunología , Leche/química , Ratas , Ratas Endogámicas Lew , Suplementos Dietéticos , Simbióticos/administración & dosificación , Probióticos/administración & dosificación , Probióticos/farmacología
2.
Biosci Microbiota Food Health ; 43(3): 204-212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966045

RESUMEN

Interest is growing in the relationship of the microbiota and intestinal environment with health in companion animals. Galacto-oligosaccharides (GOS), typical prebiotics, are expected to provide benefits in dogs. Previous studies of GOS in dogs have involved dogs with similar rearing conditions and diets, which may have biased the results. We conducted an open study of 26 healthy dogs kept in households with diverse rearing environments in order to evaluate how the intake of a GOS-containing syrup affects the intestinal microbiota and its metabolites. Each dog was fed 1.2-4.8 g of the GOS-containing syrup (GOS 0.5-2.0 g equivalent) for 8 weeks. Fecal microbiota, fecal concentrations of organic acids and putrefactive products, fecal odor, and serum uremic toxin concentrations were evaluated before intake (0 weeks), during the 8-week intake period (4 and 8 weeks), and 4 weeks after intake (12 weeks). The activity of N-benzoyl-DL-arginine peptidase in dental plaque, which may be associated with periodontal disease, was evaluated at 0 and 8 weeks. Continuous intake of GOS resulted in changes in fecal microbiota, with a particularly marked increase in the abundance of Megamonas, which produces propionic acid. Other findings included a significant increase in the fecal acetic, propionic, and n-butyric acid concentrations. Additionally, significant decreases in fecal odor, fecal phenol concentration, and serum indoxyl sulfate concentration. Intake of GOS was also associated with a significant decrease in N-benzoyl-DL-arginine peptidase activity in dental plaques. These results suggest that continuous intake of GOS may contribute to canine health.

3.
Foods ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998564

RESUMEN

Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.

4.
Front Microbiol ; 15: 1367877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933026

RESUMEN

Introduction: This study was conducted to evaluate the effects of dietary galacto-oligosaccharides (GOS) and hyocholic acids (HCA) during late gestation and lactation on reproductive performance, colostrum quality, antioxidant capacity and gut microbiota in multiparous sows. Methods: A total of 60 healthy multiparous cross-bred sows (Landrace × Yorkshire) were randomly fed 4 groups diets as follows: the basal diets (CTRL group), or the basal diets containing only 600 mg/kg GOS (GOS group), 600 mg/kg GOS + 100 mg/kg HCA (GOS + Low HCA group), and 600 mg/kg + 200 mg/kg HCA (GOS + High HCA group) from d 85 of gestation to weaning. Multiple parameters of sows were determined. Results: There was a trend of shortening the labor process of sows (p = 0.07) in the GOS group and GOS + Low/High HCA group. Compared with the CTRL group, the GOS + Low/High HCA group increased the average piglets weight at birth (p < 0.05), and increased the IgA concentration of colostrum (p < 0.05). In addition, serum triglyceride (TG) concentration was lower (p < 0.05), and serum total antioxidant capacity (T-AOC) was higher (p < 0.05) in the GOS and GOS + Low/High HCA groups than in the CTRL group at farrowing. Serum catalase (CAT) activities was higher in the GOS and GOS + High HCA groups than in the CTRL group at farrowing. The 16S rRNA analysis showed that GOS combination with high-dose HCA shaped the composition of gut microbiota in different reproductive stages (d 107 of gestation, G107; d 0 of lactation, L0; d 7 of lactation, L7). At the phylum level, the relative abundance of Bacteroidota and Desulfobacterota in G107, Bacteroidota, and Proteobacteria in L0, and Planctomycetota in L7 was increased in GOS + High HCA group (p < 0.05). Spearman correlation analysis showed that Streptococcus was positively correlated with the serum TG but negatively correlated with the average piglets weight at birth (p < 0.05). Conclusion: This investigation demonstrated that the administration of galacto-oligosaccharides (GOS) in conjunction with hyocholic acids (HCA), to sows with nutrient restrictions during late gestation and lactation, further improved their antioxidant capacity and milk quality. The observed beneficial effects of GOS + HCA supplementation could potentially be linked to an improvement in gut microbiota disorders of the sows.

5.
World J Microbiol Biotechnol ; 40(8): 257, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937374

RESUMEN

In this study, the utilization mechanism of oligosaccharides by Bifidobacterium was investigated through the transcriptome sequencing and non-targeted metabolomics technology of Bifidobacterium animalis cultured with fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS). The results showed that FOS affected the synthesis of adenosine triphosphate binding transporters (ABC transporters) by increasing the expression levels of msmE, msmG, and gluA. Similarly, GOS improved aminoacyl-tRNA synthases by upregulating the expression of tRNA-Ala, tRNA-Pro, and tRNA-Met. Bifidobacterium animalis cultured with FOS and GOS produced different metabolites, such as histamine, tartaric acid, and norepinephrine, with the functions of inhibiting inflammation, alleviating depression and diseases related to brain and nervous system and maintaining body health. Furthermore, the transcriptome and metabolome analysis results revealed that FOS and GOS promoted the growth and metabolism of Bifidobacterium animalis by regulating the related pathways of carbohydrate, energy, and amino acid metabolism. Overall, the experimental results provided significant insights into the prebiotic effects of FOS and GOS.


Asunto(s)
Bifidobacterium animalis , Metabolómica , Oligosacáridos , Prebióticos , Transcriptoma , Bifidobacterium animalis/metabolismo , Bifidobacterium animalis/genética , Oligosacáridos/metabolismo , Metaboloma , Regulación Bacteriana de la Expresión Génica , Perfilación de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Aminoácidos/metabolismo
6.
Adv Nutr ; 15(8): 100263, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897384

RESUMEN

The increasing prevalence of noncommunicable diseases in the aging population has been correlated with a decline in innate and adaptive immune responses; hence, it is imperative to identify approaches to improve immune function, prevent related disorders, and reduce or treat age-associated health complications. Prebiotic supplementation is a promising approach to modulate the gut microbiome and immune system, offering a potential strategy to maintain the integrity of immune function in older individuals. This review summarizes the current research on prebiotic galacto-oligosaccharide (GOS) immunomodulatory mechanisms mediated by bacterial-derived metabolites, including short-chain fatty acids and secondary bile acids, to maintain immune homeostasis. The potential applications of GOS as immunotherapy for age-related disease prevention in older individuals are also highlighted. This aligns with the global shift toward proactive healthcare and emphasizes the significance of early intervention in directing an individual's health trajectory.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38771554

RESUMEN

A novel ß-galactosidase gene (PbBgal35A) from Pedobacter sp. CAUYN2 was cloned and expressed in Escherichia coli. The gene had an open reading frame of 1917 bp, encoding 638 amino acids with a predicted molecular mass of 62.3 kDa. The deduced amino acid sequence of the gene shared the highest identity of 41% with a glycoside hydrolase family 35 ß-galactosidase from Xanthomonas campestris pv. campestris (AAP86763.1). The recombinant ß-galactosidase (PbBgal35A) was purified to homogeneity with a specific activity of 65.9 U/mg. PbBgal35A was optimally active at pH 5.0 and 50 °C, respectively, and it was stable within pH 4.5‒7.0 and up to 45 °C. PbBgal35A efficiently synthesized galacto-oligosaccharides from lactose with a conversion ratio of 32% (w/w) and fructosyl-galacto-oligosaccharides from lactulose with a conversion ratio of 21.9% (w/w). Moreover, the enzyme catalyzed the synthesis of galacto-oligosaccharides from low-content lactose in fresh milk, and the GOS conversion ratios of 17.1% (w/w) and 7.8% (w/w) were obtained when the reactions were performed at 45 and 4 °C, respectively. These properties make PbBgal35A an ideal candidate for commercial use in the manufacturing of GOS-enriched dairy products.

8.
Appl Microbiol Biotechnol ; 108(1): 349, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809317

RESUMEN

Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 → 3) and ß(1 → 6) elongating activity, but also some ß(1 → 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima ß-glucosidase has high activity and high thermostability. • Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.


Asunto(s)
Celobiosa , Lactosa , Oligosacáridos , Thermotoga maritima , beta-Glucosidasa , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Lactosa/metabolismo , Celobiosa/metabolismo , beta-Glucosidasa/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/química , Cinética , Oligosacáridos/metabolismo , Glicosilación , Hidrólisis , Temperatura , Estabilidad de Enzimas
9.
Gut Microbes ; 16(1): 2338946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656273

RESUMEN

Synbiotics combine the concepts of probiotics and prebiotics to synergistically enhance the health-associated effects of both components. Previously, we have shown that the intestinal persistence of inulin-utilizing L. plantarum Lp900 is significantly increased in rats fed an inulin-supplemented, high-calcium diet. Here we employed a competitive population dynamics approach to demonstrate that inulin and GOS can selectively enrich L. plantarum strains that utilize these substrates for growth during in vitro cultivation, but that such enrichment did not occur during intestinal transit in rats fed a GOS or inulin-supplemented diet. The intestinal persistence of all L. plantarum strains increased irrespective of their prebiotic utilization phenotype, which was dependent on the calcium level of the diet. Analysis of fecal microbiota and intestinal persistence decline rates indicated that prebiotic utilization capacity did not selectively stimulate intestinal persistence in prebiotic supplemented diets. Moreover, microbiota and organic acid profile analyses indicate that the prebiotic utilizing probiotic strains are vastly outcompeted by the endogenous prebiotic-utilizing microbiota, and that the collective enhanced persistence of all L. plantarum strains is most likely explained by their well-established tolerance to organic acids.


Asunto(s)
Heces , Microbioma Gastrointestinal , Inulina , Prebióticos , Animales , Prebióticos/administración & dosificación , Inulina/metabolismo , Inulina/administración & dosificación , Ratas , Heces/microbiología , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiología , Masculino , Probióticos/administración & dosificación , Simbióticos/administración & dosificación , Ratas Sprague-Dawley
10.
J Agric Food Chem ; 72(14): 7980-7990, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562102

RESUMEN

Prebiotic oligosaccharides have attracted immense interest in the infant formula (IF) industry due to their unique health benefits for infants. There is a need for the reasonable supplementation of prebiotics in premium IF products. Herein, we characterized the profile of galacto-oligosaccharides (GOS) in human milk (HM) and IF using ultrahigh-performance liquid chromatography-cyclic ion mobility-mass spectrometry (UPLC-cIM-MS) technique. Additionally, we further performed a targeted quantitative analysis of five essential HM oligosaccharides (HMOs) in HM (n = 196), IF (n = 50), and raw milk of IF (n = 10) by the high-sensitivity UPLC-MS/MS method. HM exhibited a more abundant and variable HMO composition (1183.19 to 2892.91 mg/L) than IF (32.91 to 56.31 mg/L), whereas IF contained extra GOS species and non-negligible endogenous 3'-sialyllactose. This also facilitated the discovery of secretor features within the Chinese population. Our study illustrated the real disparity in the prebiotic glycome between HM and IF and provided crucial reference for formula improvement.


Asunto(s)
Fórmulas Infantiles , Leche Humana , Lactante , Humanos , Leche Humana/química , Fórmulas Infantiles/química , Prebióticos/análisis , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Oligosacáridos/química
11.
J Agric Food Chem ; 72(14): 7954-7968, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536703

RESUMEN

Atopic dermatitis (AD), a chronic, highly pruritic, and inflammatory skin disorder, often coexists with psychiatric comorbidities including anxiety and depression, posing considerable challenges for treatment. The current research aims at evaluating the efficacy and potential therapeutic mechanism of galacto-oligosaccharides (GOS) on AD-like skin lesions and comorbid anxiety/depressive disorders. Macroscopical and histopathological examination showed that GOS could markedly relieve skin inflammation by decreasing the production of IgE, IL-4, IL-13, IFN-γ, and TNF-α and regulating the PPAR-γ/NF-κB signaling in DNFB-induced AD mice. Moreover, GOS significantly improved the anxiety- and depressive-like symptoms as mirrored by the behavior tests including FST, TST, OFT, and EZM through normalizing the neurotransmitter levels of 5-HT, DA, NE, and CORT in the brain. Mechanistically, by virtue of the high-throughput 16S rRNA gene sequencing and GC-MS techniques, GOS restructured the gut microbiota and specifically induced the proliferation of Lactobacillus and Alloprevotella, leading to an increase in the total content of fecal SCFAs, in particular acetate and butyrate. Pearson correlation analysis found a marked correlation among the altered gut microbiota/SCFAs, AD-associated skin manifestations, and comorbid behavioral phenotypes. Collectively, this work highlights that GOS is a promising strategy against both AD and associated depressive symptoms by modulating the gut microbiota-brain-skin axis.


Asunto(s)
Dermatitis Atópica , Microbioma Gastrointestinal , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , ARN Ribosómico 16S , Piel , Encéfalo , Inflamación/tratamiento farmacológico , Oligosacáridos
12.
Sci Rep ; 14(1): 4329, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383774

RESUMEN

A probiotic-related benefit for the host is inherently linked to metabolic activity and integration in the gut ecosystem. To facilitate these, probiotics are often combined with specific prebiotics in a synbiotic formulation. Here, we propose an approach for improving probiotic metabolic activity and engraftment. By cultivating the probiotic strain in the presence of a specific prebiotic (preconditioning), the bacterial enzymatic machinery is geared towards prebiotic consumption. Today, it is not known if preconditioning constitutes an advantage for the synbiotic concept. Therefore, we assessed the effects galacto-oligosaccharide (GOS) addition and preconditioning on GOS of Limosilactobacillus reuteri DSM 17938 on ex vivo colonic metabolic profiles, microbial community dynamics, and osteoblastogenesis. We show that adding GOS and preconditioning L. reuteri DSM 17938 act on different scales, yet both increase ex vivo short-chain fatty acid (SCFA) production and engraftment within the microbial community. Furthermore, preconditioned supernatants or SCFA cocktails mirroring these profiles decrease the migration speed of MC3T3-E1 osteoblasts, increase several osteogenic differentiation markers, and stimulate bone mineralization. Thus, our results demonstrate that preconditioning of L. reuteri with GOS may represent an incremental advantage for synbiotics by optimizing metabolite production, microbial engraftment, microbiome profile, and increased osteoblastogenesis.


Asunto(s)
Limosilactobacillus reuteri , Microbiota , Probióticos , Osteogénesis , Probióticos/farmacología , Prebióticos , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Ácidos Grasos Volátiles
13.
Am J Clin Nutr ; 119(2): 456-469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042412

RESUMEN

BACKGROUND: Iron fortificants tend to be poorly absorbed and may adversely affect the gut, especially in African children. OBJECTIVE: We assessed the effects of prebiotic galacto-oligosaccharides/fructo-oligosaccharides (GOS/FOS) on iron absorption and gut health when added to iron-fortified infant cereal. METHODS: We randomly assigned Kenyan infants (n = 191) to receive daily for 3 wk a cereal containing iron and 7.5 g GOS/FOS (7.5 g+iron group), 3 g (3-g+iron group) GOS/FOS, or no prebiotics (iron group). A subset of infants in the 2 prebiotic+iron groups (n = 66) consumed 4 stable iron isotope-labeled test meals without and with prebiotics, both before and after the intervention. Primary outcome was fractional iron absorption (FIA) from the cereal with or without prebiotics regardless of dose, before and after 3 wk of consumption. Secondary outcomes included fecal gut microbiota, iron and inflammation status, and effects of prebiotic dose. RESULTS: Median (25th-75th percentiles) FIAs from meals before intervention were as follows: 16.3% (8.0%-27.6%) without prebiotics compared with 20.5% (10.4%-33.4%) with prebiotics (Cohen d = 0.53; P < 0.001). FIA from the meal consumed without prebiotics after intervention was 22.9% (8.5%-32.4%), 41% higher than from the meal without prebiotics before intervention (Cohen d = 0.36; P = 0.002). FIA from the meal consumed with prebiotics after intervention was 26.0% (12.2%-36.1%), 60% higher than from the meal without prebiotics before intervention (Cohen d = 0.45; P = 0.007). After 3 wk, compared with the iron group, the following results were observed: 1) Lactobacillus sp. abundances were higher in both prebiotic+iron groups (P < 0.05); 2) Enterobacteriaceae sp. abundances (P = 0.022) and the sum of pathogens (P < 0.001) were lower in the 7.5-g+iron group; 3) the abundance of bacterial toxin-encoding genes was lower in the 3-g+iron group (false discovery rate < 0.05); 4) fecal pH (P < 0.001) and calprotectin (P = 0.033) were lower in the 7.5-g+iron group. CONCLUSIONS: Adding prebiotics to iron-fortified infant cereal increases iron absorption and reduces the adverse effects of iron on the gut microbiome and inflammation in Kenyan infants. This trial was registered at clinicaltrials.gov as NCT03894358.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Microbioma Gastrointestinal , Humanos , Lactante , Inflamación , Hierro , Isótopos de Hierro , Isótopos , Kenia , Oligosacáridos/farmacología , Prebióticos
14.
Int J Biol Macromol ; 254(Pt 3): 127966, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944726

RESUMEN

Endo-1,4-ß-galactanase is an indispensable tool for preparing prebiotic ß-galacto-oligosaccharides (ß-GOS) from pectic galactan resources. In the present study, a novel endo-1,4-ß-galactanase (PoßGal53) belonging to glycoside hydrolase family 53 from Penicillium oxalicum sp. 68 was cloned and expressed in Pichia pastoris GS115. Upon purification by affinity chromatography, recombinant PoßGal53 exhibited a single band on SDS-PAGE with a molecular weight of 45.0 kDa. Using potato galactan as substrate, PoßGal53 showed optimal reaction conditions of pH 4.0, 40 °C, and was thermostable, retaining >80 % activity after incubating below 45 °C for 12 h. Significantly, PoßGal53 exhibited relatively conserved substrate specificity for (1 â†’ 4)-ß-D-galactan with an activity of 6244 ± 282 U/mg. In this regard, the enzyme is in effect the most efficient endo-1,4-ß-galactanase identified to date. By using PoßGal53, ß-GOS monomers were prepared from potato galactan and separated using medium pressure liquid chromatography. HPAEC-PAD, MALDI-TOF-MS and ESI-MS/MS analyses demonstrated that these ß-GOS species ranged from 1,4-ß-D-galactobiose to 1,4-ß-D-galactooctaose (DP 2-8) with high purity. This work provides not only a highly active tool for enzymatic degradation of pectic galactan, but an efficient protocol for preparing ß-GOS.


Asunto(s)
Penicillium , Espectrometría de Masas en Tándem , Glicósido Hidrolasas/metabolismo , Penicillium/genética , Penicillium/metabolismo , Galactanos/química , Oligosacáridos/metabolismo , Pectinas , Especificidad por Sustrato
15.
Animals (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958121

RESUMEN

Our previous study showed that early supplementation with 10 g/(d·head) of galacto-oligosaccharides (GOS) in newborn Holstein dairy calves reduced the incidence of diarrhea and improved growth performance and mineral absorption. Since the dose of 10 g/(d·head) was the lowest by dose screening in our previous study, the present study was designed to investigate whether a lower amount of GOS has similar effects on growth performance, immune function, serum nutrients in newborn Holstein heifer calves, and to further investigate its effect on appetite-related hormones. Twenty-eight healthy newborn (1 day of age) Holstein heifers with similar average body weight (41.18 ± 1.90 kg) were randomly divided into four groups (n = 7): the control group (CON group), which received heated raw milk, and three experimental groups, which received heated raw milk supplemented with 2.5 (GOS2.5 group), 5 (GOS5 group), and 10 g/(d·head) (GOS10 group) GOS. All heifer calves were fed the same starter for 28 d. Supplementation with GOS linearly increased the final body weight, average daily gain, and feed efficiency in heifer calves (p < 0.01). Compared with the control group, the average daily gain and feed efficiency of heifer calves were significantly higher in the GOS5 and GOS10 groups than in the control group (p < 0.05). Furthermore, supplementation with GOS quadratically enhanced the starter and total average daily feed intake of the heifers (p < 0.01), especially in the GOS2.5 and GOS5 groups, (p < 0.05 vs. CON). The serum concentration of immunoglobulin A was linearly increased by GOS supplementation (p < 0.05), and the levels in the GOS5 and GOS10 groups were significantly higher than those in the CON group. Meanwhile, GOS linearly decreased serum interleukin-1ß and interleukin-6 concentrations (p < 0.05). The serum concentration of triglycerides was also linearly decreased (p < 0.05), whereas total protein and blood urea nitrogen were linearly increased (p < 0.05). Supplementation with GOS linearly decreased the serum concentration of leptin (p < 0.05) but increased cholecystokinin and glucagon-like peptide-1 (p < 0.05). Increasing doses of GOS linearly improved serum calcium and copper concentrations (p < 0.01) and quadratically enhanced the concentration of magnesium, which peaked in the GOS5 group (p < 0.05). In conclusion, GOS supplementation reduced the incidence of diarrhea and improved the growth performance and immune function of Holstein heifer calves.

16.
Foods ; 12(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959041

RESUMEN

The importance of cereals and pulses in the diet is widely recognized, and consumers are seeking for ways to balance their diet with plant-based options. However, the presence of antinutritional factors reduces their nutritional value by decreasing the bioavailability of proteins and minerals. This study's aim was to select microbes and fermentation conditions to affect the nutritional value, taste, and safety of products. Single lactic acid bacteria (LAB) strains that reduce the levels of antinutrients in faba bean and pea were utilized in the selection of microbes for two starter mixtures. They were studied in fermentations of a faba bean-oat mixture at two temperatures for 24, 48, and 72 h. The levels of antinutrients, including galacto-oligosaccharides and pyrimidine glycosides (vicine and convicine), were determined. Furthermore, a sensory evaluation of the fermented product was conducted. Fermentations with selected single strains and microbial mixtures showed a significant reduction in the content of antinutrients, and vicine and convicine decreased by up to 99.7% and 96.1%, respectively. Similarly, the oligosaccharides were almost completely degraded. Selected LAB mixtures were also shown to affect the product's sensory characteristics. Microbial consortia were shown to perform effectively in the fermentation of protein-rich materials, resulting in products with improved nutritional value and organoleptic properties.

17.
J Agric Food Chem ; 71(46): 17615-17626, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37947505

RESUMEN

Recent evidence suggests that the protective effect of gut microbiota on intestinal inflammation can be achieved through a microbe-bile acids (BAs) mechanism. Galacto-oligosaccharides (GOS) are a kind of prebiotic that alter gut microbiota composition. To verify whether GOS has a protective effect on intestinal inflammation through a microbe-BAs mechanism, this research was performed in a lipopolysaccharide (LPS) porcine model with the presence or absence of GOS. GOS prevented LPS-induced production of pro-inflammatory cytokines, the decrease of bacterial bile salt hydrolase-containing bacteria abundance, and the decrease of chendoxycholic acid (CDCA) level in piglets. Additionally, CDCA decreased LPS-induced production of pro-inflammatory cytokines, induced the expression of the takeda G-protein receptor 5 (TGR5), and its downstream cyclic adenosine monophosphate (cAMP) production in lamina propria-derived CD11b+ cells. The cAMP inhibitor eliminated the protective effect of CDCA on lamina propria-derived CD11b+ cells. These results suggested that GOS reduced the production of pro-inflammatory cytokines and inhibited NF-κB activation via microbe-BA-dependent TGR5-cAMP signaling in LPS-challenged piglets.


Asunto(s)
Microbioma Gastrointestinal , Lipopolisacáridos , Animales , Porcinos , Lipopolisacáridos/efectos adversos , Ácidos y Sales Biliares/farmacología , Oligosacáridos/metabolismo , Citocinas , Inflamación , Intestino Delgado/metabolismo
18.
Future Microbiol ; 18: 1251-1263, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37830929

RESUMEN

Aim: To investigate the effect of treatment with fecal microbiota transplantation (FMT) and galacto- and fructo-oligosaccharides on ulcerative colitis (UC) in mice. Materials & methods: A total of 90 mice, divided into nine groups, were administered FMT or prebiotics or combined treatment. The disease activity index scores, gut microbiota and inflammation factors were evaluated. Results: The treatment using FMT combined with galacto- and fructo-oligosaccharides in a 9:1 ratio significantly reduced intestinal barrier damage and alleviated symptoms of UC. Lactobacillus and Bifidobacterium and short-chain fatty acids were significantly increased after the combined treatment. Conclusion: The results demonstrate that FMT with prebiotics is a new method for UC treatment.


Changes in the bacteria that live in the human gut can cause ulcerative colitis, a type of inflammatory disease in the bowel. Using mice, we investigated two possible treatments for ulcerative colitis: fecal microbiota transplantation, in which a sample of feces is taken from a healthy donor, processed and transferred to someone else; and prebiotics, a nondigestible food ingredient that encourages the growth of good bacteria in the gut. We found that the combination of prebiotics with fecal microbiota transplantation can improve symptoms and change the bacteria in the intestines and improves the uptake of nutrients.


Asunto(s)
Colitis Ulcerosa , Trasplante de Microbiota Fecal , Ratones , Animales , Trasplante de Microbiota Fecal/métodos , Colitis Ulcerosa/terapia , Heces/microbiología , Prebióticos , Oligosacáridos
19.
J Dairy Sci ; 106(12): 8193-8206, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678769

RESUMEN

ß-galactosidase (enzymatic class 3.2.1.23) is one of the dairy industry's most important and widely used enzymes. The enzyme is part of a large family known to catalyze hydrolysis and transglycosylation reactions. Its hydrolytic activity is commonly used to decrease lactose content in dairy products, while its transglycosylase activity has recently been used to synthesize galacto-oligosaccharides (GOS). During the past couple of years, researchers have focused on studying ß-galactosidase isolated and purified from lactic acid bacteria. This review will focus on ß-galactosidase purified and characterized from what used to be the Lactobacillus genera. Furthermore, particular emphasis is given to its kinetics, biochemical characteristics, GOS production, market, and utilization by Lactobacilllaceae species.


Asunto(s)
Lactobacillaceae , Oligosacáridos , Animales , Oligosacáridos/química , Lactosa , Catálisis , beta-Galactosidasa , Galactosa/química
20.
Nutrients ; 15(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630749

RESUMEN

Supplementation with the probiotic Bifidobacterium and prebiotic galacto-oligosaccharides (GOS) could improve gut health and benefit lactose intolerant individuals. A narrative review was conducted to identify human clinical trials that evaluated lactose digestion and/or tolerance in response to consumption of Bifidobacterium, GOS, or both. A total of 152 studies on Bifidobacterium and GOS or both were published between 1983 and 2022. Out of the 152 studies, 20 were human clinical trials conducted in lactose intolerant subjects; 8 studies were conducted with Bifidobacterium supplementation and 3 studies involved GOS supplementation. Five studies reported favorable outcomes of Bifidobacterium supplementation in managing lactose intolerance (LI). Similarly, three studies reported favorable outcomes with GOS supplementation. The other three studies reported neutral outcomes. In conclusion, most studies reported a favorable effect of Bifidobacterium and GOS on managing the symptoms of LI. No study has examined the effects of combined supplementation with Bifidobacterium and GOS in lactose intolerant subjects. Future research could examine if co-supplementation with Bifidobacterium and GOS is a more effective strategy to reduce the dairy discomfort in LI individuals.


Asunto(s)
Intolerancia a la Lactosa , Lactosa , Humanos , Bifidobacterium , Digestión , Tolerancia Inmunológica , Intolerancia a la Lactosa/terapia , Ensayos Clínicos como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA