Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Prev Vet Med ; 233: 106351, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39353303

RESUMEN

Influenza is a disease that represents both a public health and agricultural risk with pandemic potential. Among the subtypes of influenza A virus, H3 influenza virus can infect many avian and mammalian species and is therefore a virus of interest to human and veterinary public health. The primary goal of this study was to train and validate classifiers for the identification of the most likely host species using the hemagglutinin gene segment of H3 viruses. A five-step process was implemented, which included training four machine learning classifiers, testing the classifiers on the validation dataset, and further exploration of the best-performing model on three additional datasets. The gradient boosting machine classifier showed the highest host-classification accuracy with a 98.0 % (95 % CI [97.01, 98.73]) correct classification rate on an independent validation dataset. The classifications were further analyzed using the predicted probability score which highlighted sequences of particular interest. These sequences were both correctly and incorrectly classified sequences that showed considerable predicted probability for multiple hosts. This showed the potential of using these classifiers for rapid sequence classification and highlighting sequences of interest. Additionally, the classifiers were tested on a separate swine dataset composed of H3N2 sequences from 1998 to 2003 from the United States of America, and a separate canine dataset composed of canine H3N2 sequences of avian origin. These two datasets were utilized to look at the applications of predicted probability and host convergence over time. Lastly, the classifiers were used on an independent dataset of environmental sequences to explore the host identification of environmental sequences. The results of these classifiers show the potential for machine learning to be used as a host identification technique for viruses of unknown origin on a species-specific level.

2.
Front Bioinform ; 4: 1411935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132675

RESUMEN

Introduction: This work utilizes predictive modeling in drug discovery to unravel potential candidate genes from Escherichia coli that are implicated in antimicrobial resistance; we subsequently target the gidB, MacB, and KatG genes with some compounds from plants with reported antibacterial potentials. Method: The resistance genes and plasmids were identified from 10 whole-genome sequence datasets of E. coli; forty two plant compounds were selected, and their 3D structures were retrieved and optimized for docking. The 3D crystal structures of KatG, MacB, and gidB were retrieved and prepared for molecular docking, molecular dynamics simulations, and ADMET profiling. Result: Hesperidin showed the least binding energy (kcal/mol) against KatG (-9.3), MacB (-10.7), and gidB (-6.7); additionally, good pharmacokinetic profiles and structure-dynamics integrity with their respective protein complexes were observed. Conclusion: Although these findings suggest hesperidin as a potential inhibitor against MacB, gidB, and KatG in E. coli, further validations through in vitro and in vivo experiments are needed. This research is expected to provide an alternative avenue for addressing existing antimicrobial resistances associated with E. coli's MacB, gidB, and KatG.

3.
Genome Biol ; 25(1): 201, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080715

RESUMEN

BACKGROUND: North African human populations present a complex demographic scenario due to the presence of an autochthonous genetic component and population substructure, plus extensive gene flow from the Middle East, Europe, and sub-Saharan Africa. RESULTS: We conducted a comprehensive analysis of 364 genomes to construct detailed demographic models for the North African region, encompassing its two primary ethnic groups, the Arab and Amazigh populations. This was achieved through an Approximate Bayesian Computation with Deep Learning (ABC-DL) framework and a novel algorithm called Genetic Programming for Population Genetics (GP4PG). This innovative approach enabled us to effectively model intricate demographic scenarios, utilizing a subset of 16 whole genomes at > 30X coverage. The demographic model suggested by GP4PG exhibited a closer alignment with the observed data compared to the ABC-DL model. Both point to a back-to-Africa origin of North African individuals and a close relationship with Eurasian populations. Results support different origins for Amazigh and Arab populations, with Amazigh populations originating back in Epipaleolithic times, while GP4PG supports Arabization as the main source of Middle Eastern ancestry. The GP4PG model includes population substructure in surrounding populations (sub-Saharan Africa and Middle East) with continuous decaying gene flow after population split. Contrary to ABC-DL, the best GP4PG model does not require pulses of admixture from surrounding populations into North Africa pointing to soft splits as drivers of divergence in North Africa. CONCLUSIONS: We have built a demographic model on North Africa that points to a back-to-Africa expansion and a differential origin between Arab and Amazigh populations.


Asunto(s)
Genética de Población , Genoma Humano , Humanos , África del Norte , Población Negra/genética , Modelos Genéticos , Flujo Génico , Teorema de Bayes , Medio Oriente , Árabes/genética , Algoritmos , Pueblo Norteafricano
4.
Microbiol Resour Announc ; 13(7): e0011924, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38899906

RESUMEN

Bacillus safensis strain WOIS2, a nitrile-metabolizing bacterium, was isolated from solid waste leachates at the Olusosun dumpsite, Ojota, Lagos State, Nigeria. Here, we present the draft genome sequence of strain WOIS2. These data provide valuable information on the bioprospecting of B. safensis nitrilase and other intriguing genes of interest.

5.
mLife ; 3(1): 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827511

RESUMEN

The SeqCode, formally called the Code of Nomenclature of Prokaryotes Described from Sequence Data, is a new code of nomenclature in which genome sequences are the nomenclatural types for the names of prokaryotic species. While similar to the International Code of Nomenclature of Prokaryotes (ICNP) in structure and rules of priority, it does not require the deposition of type strains in international culture collections. Thus, it allows for the formation of permanent names for uncultured prokaryotes whose nearly complete genome sequences have been obtained directly from environmental DNA as well as other prokaryotes that cannot be deposited in culture collections. Because the diversity of uncultured prokaryotes greatly exceeds that of readily culturable prokaryotes, the SeqCode is the only code suitable for naming the majority of prokaryotic species. The start date of the SeqCode was January 1, 2022, and the online Registry (https://seqco.de/) was created to ensure valid publication of names. The SeqCode recognizes all names validly published under the ICNP before 2022. After that date, names validly published under the SeqCode compete with ICNP names for priority. As a result, species can have only one name, either from the SeqCode or ICNP, enabling effective communication and the creation of unified taxonomies of uncultured and cultured prokaryotes. The SeqCode is administered by the SeqCode Committee, which is comprised of the SeqCode Community and elected administrative components. Anyone with an interest in the systematics of prokaryotes is encouraged to join the SeqCode Community and participate in the development of this resource.

6.
Microbiol Resour Announc ; 13(6): e0017824, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38738897

RESUMEN

Campylobacter jejuni subsp. jejuni is a leading bacterial cause of human gastroenteritis. C. jejuni strain P4549 was isolated from an asymptomatic rhesus monkey, Macaca mulatta. We report the genome sequences have a circular chromosome of 1,729,940 bp and two plasmids of 50,482 bp and 7,259 bp, respectively.

7.
Microorganisms ; 12(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792822

RESUMEN

Enterococcus faecium B13, selected from fermentation chili, has been proven to promote animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties and safety of B13 were evaluated at the genetic and phenotype levels in vitro and then confirmed in vivo. The genome of B13 contains one chromosome and two plasmids. The average nucleotide identity indicated that B13 was most closely related to the fermentation-plant-derived strain. The strain does not carry the major virulence genes of the clinical E. faecium strains but contains aac(6')-Ii, ant (6)-Ia, msrC genes. The strain had a higher tolerance to acid at pH 3.0, 4.0, and 0.3% bile salt and a 32.83% free radical DPPH clearance rate. It can adhere to Caco-2 cells and reduce the adhesion of E. coli to Caco-2 cells. The safety assessment revealed that the strain showed no hemolysis and did not exhibit gelatinase, ornithine decarboxylase, lysine decarboxylase, or tryptophanase activity. It was sensitive to twelve antibiotics but was resistant to erythromycin, rifampicin, tetracycline, doxycycline, and minocycline. Experiments in vivo have shown that B13 can be located in the ileum and colon and has no adverse effects on experiment animals. After 28 days of feeding, B13 did not remarkable change the α-diversity of the gut flora or increase the virulence genes. Our study demonstrated that E. faecium B13 may be used as a probiotic candidate.

8.
Heliyon ; 10(8): e29702, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660286

RESUMEN

Serratia marcescens is an opportunistic and nosocomial pathogen found in the intensive care unit (ICU), but its antimicrobial resistance (AMR) is rarely addressed. Here, we reported two blaKPC-2-positive S. marcescens strains, SMBC31 and SMBC50, recovered from the ICU of a hospital in Zhengzhou, China. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while S1-PFGE was employed to demonstrate plasmid size approximation. Complete genome sequences were obtained through Illumina NovaSeq 6000 and Oxford Nanopore Technologies. Both strains exhibit resistance to meropenem and harbor the blaKPC-2 and blaSRT-1 resistance genes. The plasmid pSMBC31-39K in strain SMBC31 and pSMBC50-107K in strain SMBC50 were identified as carrying the blaKPC-2 gene. Notably, both of these plasmids were successfully transferred to Escherichia coli strain J53. Phylogenetic analysis based on plasmid sequences revealed that pSMBC31-39K exhibited high homology with plasmids found in Aeromonas caviae, Citrobacter sp., and Pseudomonas aeruginosa, while pSMBC50-107K showed significant similarity to those of E. coli and Klebsiella pneumoniae. Notably, the coexistence of blaKPC-2 and blaSRT-1 was observed in all 94 KPC-2-producing S. marcescens strains by mining all genomes available under the GenBank database, which were mainly isolated from hospitalized patients. The emergence of multidrug-resistant S. marcescens poses significant challenges in treating clinical infections, highlighting the need for increased surveillance of this pathogen.

9.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649930

RESUMEN

AIM: Corallococcus species are diverse in the natural environment with 10 new Corallococcus species having been characterized in just the last 5 years. As well as being an abundant myxobacterial genus, they produce several secondary metabolites, including Corallopyronin, Corramycin, Coralmycin, and Corallorazine. We isolated a novel strain Corallococcus spp RDP092CA from soil in South Wales, UK, using Candida albicans as prey bait and characterized its predatory activities against pathogenic bacteria and yeast. METHODS AND RESULTS: The size of the RDP092CA genome was 8.5 Mb with a G + C content of 71.4%. Phylogenetically, RDP092CA is closely related to Corallococcus interemptor, C. coralloides, and C. exiguus. However, genome average nucleotide identity and digital DNA-DNA hybridization values are lower than 95% and 70% when compared to those type strains, implying that it belongs to a novel species. The RDP092CA genome harbours seven types of biosynthetic gene clusters (BGCs) and 152 predicted antimicrobial peptides. In predation assays, RDP092CA showed good predatory activity against Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii, and Staphylococcus aureus but not against Enterococcus faecalis. It also showed good antibiofilm activity against all five bacteria in biofilm assays. Antifungal activity against eight Candida spp. was variable, with particularly good activity against Meyerozyma guillermondii DSM 6381. Antimicrobial peptide RDP092CA_120 exhibited potent antibiofilm activity with >50% inhibition and >60% dispersion of biofilms at concentrations down to 1 µg/ml. CONCLUSIONS: We propose that strain RDP092CA represents a novel species with promising antimicrobial activities, Corallococcus senghenyddensis sp. nov. (=NBRC 116490T =CCOS 2109T), based on morphological, biochemical, and genomic features.


Asunto(s)
Myxococcales , Filogenia , Myxococcales/genética , Myxococcales/metabolismo , Myxococcales/aislamiento & purificación , Composición de Base , Genoma Bacteriano , Microbiología del Suelo , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Familia de Multigenes , ADN Bacteriano/genética , ARN Ribosómico 16S/genética
10.
Front Plant Sci ; 15: 1366413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638359

RESUMEN

In the early 1900s, mutation breeding to select varieties with desirable traits using spontaneous mutation was actively conducted around the world, including Japan. In rice, the number of fixed mutations per generation was estimated to be 1.38-2.25. Although this low mutation rate was a major problem for breeding in those days, in the modern era with the development of next-generation sequencing (NGS) technology, it was conversely considered to be an advantage for efficient gene identification. In this paper, we proposed an in silico approach using NGS to compare the whole genome sequence of a spontaneous mutant with that of a closely related strain with a nearly identical genome, to find polymorphisms that differ between them, and to identify the causal gene by predicting the functional variation of the gene caused by the polymorphism. Using this approach, we found four causal genes for the dwarf mutation, the round shape grain mutation and the awnless mutation. Three of these genes were the same as those previously reported, but one was a novel gene involved in awn formation. The novel gene was isolated from Bozu-Aikoku, a mutant of Aikoku with the awnless trait, in which nine polymorphisms were predicted to alter gene function by their whole-genome comparison. Based on the information on gene function and tissue-specific expression patterns of these candidate genes, Os03g0115700/LOC_Os03g02460, annotated as a short-chain dehydrogenase/reductase SDR family protein, is most likely to be involved in the awnless mutation. Indeed, complementation tests by transformation showed that it is involved in awn formation. Thus, this method is an effective way to accelerate genome breeding of various crop species by enabling the identification of useful genes that can be used for crop breeding with minimal effort for NGS analysis.

11.
Microbiol Resour Announc ; 13(3): e0096123, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38315017

RESUMEN

Leuconostoc carnosum is a bacterial species commonly associated with meat spoilage. However, some strains exhibit preservative effects due to bacteriocin production. Here, we report the complete genome sequences for two strains, L. carnosum 4010 and AMS1. Bacteriocin-related gene clusters were found on the plasmids of both strains.

12.
Microbiol Resour Announc ; 13(3): e0082723, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345380

RESUMEN

Vibrio cholerae has caused seven cholera pandemics in the past two centuries. The seventh and ongoing pandemic has been particularly severe on the African continent. Here, we report long read-based genome sequences of six V. cholerae strains isolated in the Democratic Republic of the Congo between 2009 and 2012.

13.
Microbiol Resour Announc ; 13(3): e0108923, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38376218

RESUMEN

Here, we present the genomes of two soil actinobacteria: Arthrobacter sp. strain AZCC_0090 and Mycobacterium sp. strain AZCC_0083, isolated from oligotrophic subsurface soils in Southern Arizona, USA.

14.
Microbiol Resour Announc ; 13(3): e0126023, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38386595

RESUMEN

Here, we report the draft genome sequences of strains of Bacillus and Salarachaeum that were isolated from hypersaline water samples collected from Lake Karum, Danakil Depression, Ethiopia. The sequences pave the way for more targeted studies into the potential biological activities and secondary metabolite synthesis of these organisms.

15.
Antibiotics (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391498

RESUMEN

Staphylococcus aureus sequence type (ST) 398 is a lineage affecting both humans and livestock worldwide. However, the mechanisms underlying its clonal evolution are still not clearly elucidated. We applied whole-genome sequencing (WGS) typing to 45 S. aureus strains from China and Canada between 2005 and 2014, in order to gain insight into their evolutionary pathway. Based on WGS phylogenetic analysis, 42 isolates were assigned to the human-associated clade (I/II-GOI) and 3 isolates to livestock-associated clade (IIa). Phylogeny of ϕSa3 sequences revealed five phage groups (Groups 1-5), with Group 1 carrying ϕSa3-Group 1 (ϕSa3-G1), Group 2 carrying ϕSa3-G2, Group 3 carrying ϕSa3-G3, Group 4 carrying ϕSa3-G4 and Group 5 lacking ϕSa3. ϕSa3-G1 was only found in strains that accounted for the most ancestral human clade I, while ϕSa3-G2, ϕSa3-G3 and ϕSa3-G4 were found restricted to sublineages within clade II-GOI. Some isolates of clade II-GOI were also found to be ϕSa3-negative or resistant to methicillin which are unusual characteristics for human-adapted isolates. This study demonstrated a strong association between phylogenetic grouping and phage type, suggesting an important role of ϕSa3 prophage in the evolution of human-adapted ST398 subclones. In addition, our results suggest that this subclone slowly began to adapt to animal hosts by losing ϕSa3 and acquiring methicillin resistance, which was observed in some strains of human-associated clade II-GOI, an intermediate human to livestock transmission clade.

16.
Virol Sin ; 39(1): 156-168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253258

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for coronavirus disease 2019 (COVID-19), continues to evolve, giving rise to more variants and global reinfections. Previous research has demonstrated that barcode segments can effectively and cost-efficiently identify specific species within closely related populations. In this study, we designed and tested RNA barcode segments based on genetic evolutionary relationships to facilitate the efficient and accurate identification of SARS-CoV-2 from extensive virus samples, including human coronaviruses (HCoVs) and SARSr-CoV-2 lineages. Nucleotide sequences sourced from NCBI and GISAID were meticulously selected and curated to construct training sets, encompassing 1733 complete genome sequences of HCoVs and SARSr-CoV-2 lineages. Through genetic-level species testing, we validated the accuracy and reliability of the barcode segments for identifying SARS-CoV-2. Subsequently, 75 main and subordinate species-specific barcode segments for SARS-CoV-2, located in ORF1ab, S, E, ORF7a, and N coding sequences, were intercepted and screened based on single-nucleotide polymorphism sites and weighted scores. Post-testing, these segments exhibited high recall rates (nearly 100%), specificity (almost 30% at the nucleotide level), and precision (100%) performance on identification. They were eventually visualized using one and two-dimensional combined barcodes and deposited in an online database (http://virusbarcodedatabase.top/). The successful integration of barcoding technology in SARS-CoV-2 identification provides valuable insights for future studies involving complete genome sequence polymorphism analysis. Moreover, this cost-effective and efficient identification approach also provides valuable reference for future research endeavors related to virus surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , ARN , Reproducibilidad de los Resultados , Secuencia de Bases
17.
Anal Chim Acta ; 1291: 342220, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38280785

RESUMEN

BACKGROUND: In the field of DNA amplification, there are great challenges in the effectively amplify of long-chain amplification, especially amplification up to several hundred kb level. RESULTS: A novel technique for the unbiased whole genome amplification from a thimbleful of DNA circles, such as low as 10 ng/ 10 µL of the circular cpDNA or low as 5 ng/ 10 µL of the plasmid, is developed, which can amplify an abundance of the whole genome sequences. Specifically, the new technique that combines rolling-amplification and triple-enzyme system presents a tightly controlled process of a series of buffers/reactions and optimized procedures, that applies from the primer-template duplexes to the Elution step. The result of this technique provides a new approach for extending RCA capacity, where it can reach 200 kb from the circular cpDNA amplification and 150 kb from the plasmid DNA amplification, that demonstrates superior breadth and evenness of genome coverage, high reproducibility, small amplification bias with the amplification efficiency. SIGNIFICANCE AND NOVELTY: This new technique will develop into one of the powerful tools for isothermal DNA amplification in vitro, genome sequencing/analysis, phylogenetic analysis, physical mapping, and other molecular biology applications.


Asunto(s)
ADN Circular , ADN , ADN Circular/genética , Filogenia , Reproducibilidad de los Resultados , ADN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos
18.
Gene ; 894: 147963, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926173

RESUMEN

Sophora koreensis Nakai, an endemic species distributed only in the Korean Peninsula, is of great geographical, economic, and taxonomic importance. Although its complete chloroplast (cp) genome sequence has been reported, its mitochondrial (mt) genome sequence has not yet been studied. Therefore, in this study, we aimed to investigate its mt genome sequence and compare it with those reported for other Fabaceae species. Total genomic DNA was extracted from fresh S. koreensis leaves collected from natural habitats in Gangwon-do Province, South Korea. This was followed by polymerase chain reaction (PCR) amplification of cpDNA insertions in the mt genome and the detection of microsatellites and dispersed repeats in the cp and mt genomes. Finally, the cp and mt genomes of S. koreensis were compared with those reported for other Fabaceae species. The cp sequence of S. koreensis showed identical gene orders and contents as those previously reported. Only six substitutions and one deletion were detected with 99 % homology. Conversely, the complete mt genome sequence, which was 517,845 bp in length and encoded 61 genes, including 43 protein-coding, 15 transfer RNAs, and 3 ribosomal RNA genes, was considerably different from that of S. japonica in terms of gene order and composition. Further, the mt genome of S. koreensis included ca. 7 and 3 kb insertions, representing an intracellular gene transfer (IGT) event, and the regions with these insertions were determined to be originally present in the cp genome. This IGT event was also confirmed via PCR amplification. IGT events can be induced via biological gene expression control or the use of repetitive sequences, and they provide important insights into the evolutionary lineage of S. koreensis. However, further studies are needed to clarify the gene transfer mechanisms between the two organelles.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Sophora , Genoma Mitocondrial/genética , Cloroplastos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Genoma del Cloroplasto/genética , Sophora/genética , Filogenia , Análisis de Secuencia de ADN
19.
Microbiol Resour Announc ; 13(1): e0078423, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38099677

RESUMEN

Here, we report the complete genome sequence of the Bifidobacterium faecale strain JCM 19861T (= CU 3-7T = KACC 17904T), isolated from infant feces by Jung-Hye Choi's group in 2014. The B. faecale JCM 19861T genome comprised a circular chromosome of 2,213,206 bp, with a G + C content of 59.0%.

20.
Vet Med Sci ; 10(3): e1338, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38140758

RESUMEN

BACKGROUND: The causative agent of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of zoonotic origin and has shown reverse zoonotic transmissibility. OBJECTIVES: The aim of this cross-sectional study was to investigate the serological and molecular prevalence of SARS-CoV-2 infection in the domestic cat (Felis catus) population from Latvia in natural conditions and subsequently perform viral genome analysis. METHODS: Oropharyngeal and rectal swabs and blood samples were collected from 273 domestic cats during the second wave of COVID-19 infection in Latvia. Molecular prevalence was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR). Serum samples were analysed via double antigen enzyme-linked immunosorbent assay targeting the antibody against the nucleocapsid protein of SARS-CoV-2. Positive swab samples were analysed using whole viral genome sequencing and subsequent phylogenetic analysis of the whole genome sequencing data of the samples was performed. RESULTS: The overall SARS-CoV-2 RT-PCR positivity and seroprevalence was 1.1% (3/273) and 2.6% (7/273), respectively. The SARS-CoV-2 genome sequences from three RT-PCR positive cats were assigned to the three common lineages (PANGOLIN lineage S.1.; B.1.177.60. and B.1.1.7.) circulating in Latvia during the particular period of time. CONCLUSIONS: These findings indicate that feline infection with SARS-CoV-2 occurred during the second wave of the COVID-19 pandemic in Latvia, yet the overall prevalence was low. In addition, it seems like no special 'cat' pre-adaptations were necessary for successful infection of cats by the common lineages of SARS-CoV-2.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Gatos , Animales , COVID-19/epidemiología , COVID-19/veterinaria , SARS-CoV-2 , Pandemias , Letonia/epidemiología , Estudios Transversales , Filogenia , Prevalencia , Estudios Seroepidemiológicos , Enfermedades de los Gatos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA