Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 13(6): e10163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37304370

RESUMEN

Most of what is known about extra-pair paternity in hole-nesting birds derives from studies using artificial nesting sites, such as nestboxes. However, it has rarely been investigated whether inference drawn from breeding events taking place in nestboxes matches what would be observed under natural conditions, that is, in natural cavities. We here report on a variation in promiscuity in blue tits and great tits nesting in natural cavities and nestboxes in an urban forest in Warsaw, Poland. Specifically, we tested whether local breeding density, local breeding synchrony, and extra-pair paternity (inferred from SNP data generated with a high-throughput genotyping by sequencing method) differed between birds nesting in natural cavities and nestboxes. In both blue tits and great tits, the frequency of extra-pair paternity was similar between the two cavity types. In blue tits, we observed shorter nearest neighbor distance, higher neighbor density, and higher synchronous neighbor density (i.e., density of fertile females) in nestboxes relative to natural cavities. No such pattern was found in great tits. Moreover, we detected a positive relationship between the proportion of extra-pair offspring in the nest and neighbor density around the nest in blue tits. Our results revealed that the provisioning of nestboxes did not change rates of extra-pair paternity, suggesting that conclusions drawn from nestbox studies might adequately represent the natural variation in extra-pair matings in some species or sites. However, the observed differences in spatiotemporal components of breeding dynamics highlight the fact that these parameters should be carefully considered when comparing mating behavior across studies and/or sites.

2.
J Evol Biol ; 35(12): 1635-1645, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35411987

RESUMEN

Sexual reproduction is almost universal in vertebrates; therefore, each animal species which uses it must have a mechanism for designating sex as male or female. Fish, especially, have a wide range of sex determining systems. In the present study, we aimed to identify a genetic basis for sex determination in the common creek chub (Semotilus atromaculatus) using genotyping-by-sequencing data. No sex-associated markers were found by RADSex or a GWAS using GEMMA; however, Weir and Cockerham locus-specific FST analysis and discriminant analysis of principal components revealed genetic differentiation between the sexes at several loci. While no explicit sex determination mechanism has been yet discovered in creek chub, these loci are potential candidates for future studies. Incompatible systems are thought to increase reproductive isolation but interspecific hybridization is common among groups such as cyprinid minnows; thus, studies such as ours can provide insight into hybridization and evolutionary diversification of this clade. We also highlight technical challenges involved in studying sex determination in evolutionary groups with extremely variable mechanisms and without heteromorphic sex chromosomes.


Asunto(s)
Cyprinidae , Animales , Masculino , Femenino , Cyprinidae/genética , Evolución Biológica , Procesos de Determinación del Sexo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA