Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39007599

RESUMEN

The interaction between T-cell receptors (TCRs) and peptides (epitopes) presented by major histocompatibility complex molecules (MHC) is fundamental to the immune response. Accurate prediction of TCR-epitope interactions is crucial for advancing the understanding of various diseases and their prevention and treatment. Existing methods primarily rely on sequence-based approaches, overlooking the inherent topology structure of TCR-epitope interaction networks. In this study, we present $GTE$, a novel heterogeneous Graph neural network model based on inductive learning to capture the topological structure between TCRs and Epitopes. Furthermore, we address the challenge of constructing negative samples within the graph by proposing a dynamic edge update strategy, enhancing model learning with the nonbinding TCR-epitope pairs. Additionally, to overcome data imbalance, we adapt the Deep AUC Maximization strategy to the graph domain. Extensive experiments are conducted on four public datasets to demonstrate the superiority of exploring underlying topological structures in predicting TCR-epitope interactions, illustrating the benefits of delving into complex molecular networks. The implementation code and data are available at https://github.com/uta-smile/GTE.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Humanos , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Redes Neurales de la Computación , Biología Computacional/métodos , Unión Proteica , Epítopos/química , Epítopos/inmunología , Algoritmos , Programas Informáticos
2.
Heliyon ; 10(9): e30045, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694097

RESUMEN

Health insurance fraud is becoming more common and impacting the fairness and sustainability of the health insurance system. Traditional health insurance fraud detection primarily relies on recognizing established data patterns. However, with the ever-expanding and complex nature of health insurance data, it is difficult for these traditional methods to effectively capture evolving fraudulent activity and tactics and keep pace with the constant improvements and innovations of fraudsters. As a result, there is an urgent need for more accurate and flexible analytics to detect potential fraud. To address this, the Multi-channel Heterogeneous Graph Structured Learning-based health insurance fraud detection method (MHGSL) was proposed. MHGSL constructs a graph of health insurance data from various entities, such as patients, departments, and medicines, and employs graph structure learning to extract topological structure, features, and semantic information to construct multiple graphs that reflect the diversity and complexity of the data. We utilize deep learning methods such as heterogeneous graph neural networks and graph convolutional neural networks to combine multi-channel information transfer and feature fusion to detect anomalies in health insurance data. The results of extensive experiments on real health insurance data demonstrate that MHGSL achieves a high level of accuracy in detecting potential fraud, which is better than existing methods, and is able to quickly and accurately identify patients with fraudulent behaviors to avoid loss of health insurance funds. Experiments have shown that multi-channel heterogeneous graph structure learning in MHGSL can be very helpful for health insurance fraud detection. It provides a promising solution for detecting health insurance fraud and improving the fairness and sustainability of the health insurance system. Subsequent research on fraud detection methods can consider semantic information between patients and different types of entities.

3.
Math Biosci Eng ; 21(1): 1489-1507, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303474

RESUMEN

Effective information extraction of pharmaceutical texts is of great significance for clinical research. The ancient Chinese medicine text has streamlined sentences and complex semantic relationships, and the textual relationships may exist between heterogeneous entities. The current mainstream relationship extraction model does not take into account the associations between entities and relationships when extracting, resulting in insufficient semantic information to form an effective structured representation. In this paper, we propose a heterogeneous graph neural network relationship extraction model adapted to traditional Chinese medicine (TCM) text. First, the given sentence and predefined relationships are embedded by bidirectional encoder representation from transformers (BERT fine-tuned) word embedding as model input. Second, a heterogeneous graph network is constructed to associate words, phrases, and relationship nodes to obtain the hidden layer representation. Then, in the decoding stage, two-stage subject-object entity identification method is adopted, and the identifier adopts a binary classifier to locate the start and end positions of the TCM entities, identifying all the subject-object entities in the sentence, and finally forming the TCM entity relationship group. Through the experiments on the TCM relationship extraction dataset, the results show that the precision value of the heterogeneous graph neural network embedded with BERT is 86.99% and the F1 value reaches 87.40%, which is improved by 8.83% and 10.21% compared with the relationship extraction models CNN, Bert-CNN, and Graph LSTM.


Asunto(s)
Almacenamiento y Recuperación de la Información , Redes Neurales de la Computación , Farmacopeas como Asunto , Suministros de Energía Eléctrica , Semántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA