Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39103587

RESUMEN

To date, land use structure information has been employed extensively for ecological risk assessment (ERA) purpose in regional/landscape scales; in contrast, land use function (LUF) information-based ERA research is still scarce. Therefore, it is necessary to carry out more ERA case studies in macroscale with the help of pertinent LUF indicators. As an important way to construct production-living-ecology LUF indexes, this study employs the weighted stacking method and related economic statistical data for regional ecological risk assessment (RERA) purpose within Yellow River Delta High-efficiency Eco-economic Zone (YRDHEZ), China. This YRDHEZ-RERA research pointed out that (1) it was rational to use a series of economic statistical data to more comprehensively and precisely characterize regional production and living function grades in YRDHEZ. (2) The Yellow River Delta had lower agriculture and non-agriculture production functions, whereas the rest of the zone had higher production functions. (3) Most people lived in the south part, whereas north coastal zone had very low population density; the east part had higher per capita disposable income of urban/rural households than that of west. (4) The south part of the zone had higher production/living functions and integrated ecological risk source intensity than those of north coastal zone, whereas the coastal zone had higher ecology function, eco-environmental vulnerability, and final integrated ecological risk than those of inland region. As for regional ecological risk management, establishing nature reserve with strict spatial governance for coastal/estuarine wetlands and coordinating production/ecology functions of coastal salterns/breeding ponds are relevant feasible measures.

2.
Angew Chem Int Ed Engl ; : e202410378, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143026

RESUMEN

Various isomers have been developed to regulate the morphology and reduce defects in state-of-the-art perovskite solar cells. To insight the structure-function-effect correlations for the isomerization of thiourea derivatives on the performance of the perovskite solar cells (PSCs), we developed two thiourea derivatives [(3,5-dichlorophenyl)amino]thiourea (AT) and N-(3,5-dichlorophenyl)hydrazinecarbothioamide (HB). Supported by experimental and calculated results, it was found that AT can bind with undercoordinated Pb2+ defect through synergistic interaction between N1 and C=S group with a defect formation energy of 1.818 eV, which is much higher than that from the synergistic interaction between two -NH- groups in HB and perovskite (1.015 eV). Moreover, the stronger interaction between AT and Pb2+ regulates the crystallization process of perovskite film to obtain a high-quality perovskite film with high crystallinity, large grain size, and low defect density. Consequently, the AT-treated FACsPbI3 device engenders an efficiency of 25.71% (certified as 24.66%), which is greatly higher than control (23.74%) and HB-treated FACsPbI3 devices (25.05%). The resultant device exhibits a remarkable stability for maintaining 91.0% and 95.2% of its initial efficiency after aging 2000 h in air condition or tracking at maximum power point for 1000 h, respectively.

3.
ACS Nano ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143807

RESUMEN

Solar-driven water-electricity cogeneration is a promising strategy for tackling water scarcity and power shortages. However, comprehensive reviews on performance, scalability, commercialization, and power density are lacking. This Perspective presents an overview of recent developments and insights into the challenges and future outlooks for practical applications in this area. We summarize recent advances in high-efficiency water production, focusing on rapid evaporation and condensation. Then we categorize power-water cogeneration systems by power generation mechanisms like steam, evaporation, salinity gradient, photovoltaics, and temperature gradient, providing a comprehensive summary of the performance and applicability of these systems in different scenarios. Finally, we highlight challenges in current systems, considering nanoscale mechanisms and large-scale manufacturing, while also exploring potential trends for future practical applications.

4.
ACS Appl Mater Interfaces ; 16(33): 44298-44304, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39108070

RESUMEN

Obtaining water and renewable energy from the atmosphere provides a potential solution to the growing energy shortage. Leveraging the synergistic inspiration from desert beetles, cactus spines, and rice leaves, here, a multibioinspired hybrid wetting rod (HWR) is prepared through simple solution immersion and laser etching, which endows an efficient water collection from the atmosphere. Importantly, benefiting from the bionic asymmetric pattern design and the three-dimensional structure, the HWR possesses an omnidirectional fog collection with a rate of up to 23 g cm-2 h-1. We further show that the HWR could be combined with a droplet-based electricity generator to convert kinetic energy from falling droplets into electrical energy with a maximum output voltage of 200 V and a current of 2.47 µA to light up 28 LEDs. Collectively, this research provides a strategy for synchronous fog collection and power generation, which is promising for environmentally friendly energy production.

5.
Adv Sci (Weinh) ; : e2405303, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135539

RESUMEN

The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862 V), short circuit-current density (JSC, 27.52 mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.

6.
Adv Mater ; : e2311501, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049723

RESUMEN

The perovskite/silicon tandem solar cell represents one of the most promising avenues for exceeding the Shockley-Queisser limit for single-junction solar cells at a reasonable cost. Remarkably, its efficiency has rapidly increased from 13.7% in 2015 to 34.6% in 2024. Despite the significant research efforts dedicated to this topic, the "secret" to achieving high-performance perovskite/silicon tandem solar cells seems to be confined to a few research groups. Additionally, the discrepancies in preparation and characterization between single-junction and tandem solar cells continue to impede the transition from efficient single-junction to efficient tandem solar cells. This review first revisits the key milestones in the development of monolithic perovskite/silicon tandem solar cells over the past decade. Then, a comprehensive analysis of the background, advancements, and challenges in perovskite/silicon tandem solar cells is provided, following the sequence of the tandem fabrication process. The progress and limitations of the prevalent stability measurements for tandem devices are also discussed. Finally, a roadmap for designing efficient, scalable, and stable perovskite/silicon tandem solar cells is outlined. This review takes the growth history into consideration while charting the future course of perovskite/silicon tandem research.

7.
Small ; : e2404001, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072918

RESUMEN

Graphene has tremendous potential in future electronics due to its superior force, electrical, and thermal properties. However, the development of graphene devices is limited by its complex, high-cost, and low-efficiency preparation process. This study proposes a novel laser bidirectional graphene printing (LBGP) process for the large-scale preparation of patterned graphene films. In LBGP, a sandwich sample composed of a thermoplastic elastomer (TPE) substrate, carbon precursor powder, and a glass cover is irradiated by a nanosecond pulsed laser. The laser photothermal effect converts the carbon precursor into graphene, with partial graphene sheets deposited directly on the TPE substrate and the remaining transferred to the glass cover via a laser-induced plasma plume. This method simultaneously prepares two face-to-face graphene films in a single laser irradiation, integrating synthesis, transfer, and patterning. The resulting graphene patterns demonstrate good performance in flexible pressure sensing and Joule heating, showcasing high sensitivity (7.7 kPa-1), fast response (37 ms), and good cycling stability (2000 cycles) for sensors, and high heating rate (1 °C s-1) and long-term stability (3000 s) for heaters. It is believed that the simple, low-cost, and efficient LBGP process can promote the development of graphene electronics and laser manufacturing processes.

8.
Small ; : e2400588, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073231

RESUMEN

Semiconducting materials show high potential for solar energy harvesting due to their suitable bandgaps, which allow the efficient utilization of light energy larger than their bandgaps. However, the photon energy smaller than their bandgap is almost unused, which significantly limits their efficient applications. Herein, plasmonic Pd/SnS2 microcubes with abundant Pd nanoparticles attached to the SnS2 nanosheets are fabricated by an in situ photoreduction method. The as-prepared Pd/SnS2 microcubes extend the light-harvesting ability of SnS2 beyond its cutoff wavelength, which is attributed to the localized surface plasmon resonance (LSPR) effect of the Pd nanoparticles and the 3D structure of the SnS2 microcubes. Pd nanoparticles can also enhance the light absorption of TiO2 nanoparticles and NiPS3 nanosheets beyond their cutoff wavelengths, revealing the universality for promoting absorption above the cutoff wavelength of the semiconductors. When the plasmonic Pd/SnS2 microcubes are integrated into a hydrophilic sponge acting as the solar evaporator, a solar-to-vapor efficiency of up to 89.2% can be achieved under one sun. The high solar-to-vapor conversion efficiency and the broad applicability of extending the light absorption far beyond the cutoff wavelength of the semiconductor comprise the potential of innovative plasmonic nanoparticle/semiconductor composites for solar desalination.

9.
Gels ; 10(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39057457

RESUMEN

Fertilizers with enhanced efficiency or high-efficiency fertilizers increase the nutrient availability, minimize losses, and reduce costs, thereby increasing crop yields and food production while mitigating environmental impacts. This research evaluates the synthesis of biodegradable hydrogels from cassava starch and citric acid for agrochemical applications. Hydrogels were synthesized using water as the solvent and applied for the controlled release of macronutrients (N and K). Four concentrations of nutrient-containing salts were tested (0.5 to 10.0% w/w). Materials were analyzed using ATR-FTIR spectroscopy and swelling studies. The presence of nutrients reduced both the crosslinking efficacy and the water absorption capacity, with the latter dropping from 183.4 ± 0.6% to 117.9 ± 3.7% and 157.4 ± 25.0% for hydrogels loaded with NH4Cl and KCl, respectively. The cumulative release of K and N from the hydrogel was monitored for 144 h and examined using kinetics models, revealing that the releases follow Fickian's diffusion and anomalous diffusion, respectively. Additionally, the material was formed using cassava with peel previously milled to reduce the production costs, and its potential for nutrient-controlled delivery was evaluated, with the finding that this hydrogel decreases the release rate of nitrogen. The results suggest that these biomaterials may have promising applications in the agrochemical industry in the making of high-efficiency fertilizers.

10.
Small ; : e2402510, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984762

RESUMEN

With the rapid advancement of electronic technology, traditional textiles are challenged to keep up with the demands of wearable electronics. It is anticipated that multifunctional textile-based electronics incorporating energy storage, electromagnetic interference (EMI) shielding, and photothermal conversion are expected to alleviate this problem. Herein, a multifunctional cotton fabric with hierarchical array structure (PPy/NiCoAl-LDH/Cotton) is fabricated by the introduction of NiCoAl-layered double hydroxide (NiCoAl-LDH) nanosheet arrays on cotton fibers, followed by polymerization and growth of continuous dense polypyrrole (PPy) conductive layers. The multifunctional cotton fabric shows a high specific areal capacitance of 754.72 mF cm-2 at 5 mA cm-2 and maintains a long cycling life (80.95% retention after 1000 cycles). The symmetrical supercapacitor assembled with this fabric achieves an energy density of 20.83 Wh cm-2 and a power density of 0.23 mWcm-2. Moreover, the excellent electromagnetic interference shielding (38.83 dB), photothermal conversion (70.2 °C at 1000 mW cm-2), flexibility and durability are also possess by the multifunctional cotton fabric. Such a multifunctional cotton fabric has great potential for using in new energy, smart electronics, and thermal management applications.

11.
Small ; : e2402786, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966898

RESUMEN

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

12.
Chemphyschem ; : e202400587, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023131

RESUMEN

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has exceeded those of conventional thin-film solar cell technologies, and the speed at which this increase has been achieved is unprecedented in the history of photovoltaics. Despite the significant progress achieved by PSCs at the laboratory level, their commercial prospects still face two significant challenges: scaling up in size and ensuring long-term stability. Small-area devices (~1 cm2) are typically fabricated using spin-coating. However, this approach may not be suitable for preparing the large-area (>100 cm2) substrates required for commercialization. Thus, new materials and methods must be developed to facilitate the coating of large-area PSCs. This review will discuss the development of scaling up organic-inorganic hybrid PSCs and the challenges of increasing the device area. Furthermore, it will provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.

13.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000746

RESUMEN

The decay of radon gas in soil and buildings produces alpha radiation, which is the second leading cause of lung cancer in humans. Therefore, by conveniently detecting radon gas in the environment, potential sources of danger can be identified early, and necessary measures can be taken to protect human health. Solid-state nuclear track detectors prepared from polyallyl diglycol carbonate (PADC) resin are the most sensitive detectors for alpha radiation released by radon gas. The traditional method of preparing PADC resin involves free radical thermal polymerization, which suffers from issues such as low polymerization efficiency, long processing time, and the occurrence of defects in the product. In this study, PADC resin was efficiently prepared using a UV initiator. Starting from the polymerization mechanism, experiments were designed using a controlled variable approach, and a rational polymerization apparatus was devised. By comparing the double bond conversion rate, transparency, hardness, and yellowness index of the polymers, the optimal initiator for PADC resin, 2-hydroxy-2-methyl-1-phenyl-1-propanone (1173), was selected. The influence of irradiation intensity, irradiation time, and UV initiator dosage was investigated. The performance of the polymers, including double bond conversion rate, optical properties, dynamic mechanical properties, etching rate, and track detection efficiency, was analyzed. The experimental conditions for preparing PADC resin were optimized: irradiation intensity of 12 mW/cm2, irradiation time of 25 min, and UV initiator dosage of 5 parts. The resulting resin polymer had a double bond conversion rate of 93.2% and a track detection efficiency of 0.714.

14.
Adv Sci (Weinh) ; : e2403735, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044366

RESUMEN

Naphthalene diimides (NDI) are widely serving as the skeleton to construct electron transport materials (ETMs) for optoelectronic devices. However, most of the reported NDI-based ETMs suffer from poor interfaces with the perovskite which deteriorates the carrier extraction and device stability. Here, a representative design concept for editing the peripheral groups of NDI molecules to achieve multifunctional properties is introduced. The resulting molecule 2,7-bis(2,2,3,3,4,4,4-heptafluorobutyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI-C4F) incorporated with hydrophobic fluorine units contributes to the prevention of excessive molecular aggregation, the improvement of surface wettability and the formation of strong chemical coordination with perovskite precursors. All these features favor retarding the perovskite crystallization and achieving superior buried interfaces, which subsequently promote charge collection and improve the structural compatibility between perovskite and ETMs. The corresponding PSCs based on low-temperature processed NDI-C4F yield a record efficiency of 23.21%, which is the highest reported value for organic ETMs in n-i-p PSCs. More encouragingly, the unencapsulated devices with NDI-C4F demonstrate extraordinary stability by retaining over 90% of their initial PCEs after 2600 h in air. This work provides an alternative molecular strategy to engineer the buried interfaces and can trigger further development of organic ETMs toward reliable PSCs.

15.
Environ Sci Technol ; 58(31): 14013-14021, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041953

RESUMEN

Large amounts of wastewater containing low-concentration (<10 ppm) rare-earth ions (REIs) are discharged annually in China's rare-earth mining and processing industry, resulting in severe environmental pollution and economic losses. Hence, achieving efficient selective recovery of low-concentration REIs from REIs-containing wastewater is essential for environmental protection and resource recovery. In this study, a pseudocapacitance system was designed for highly efficient capacitive selective recovery of REIs from wastewater using the titanium dioxide/P/C (TiO2/P/C) composite electrode, which exhibited over 99% recovery efficiency for REIs, such as Eu3+, Dy3+, Tb3+, and Lu3+ in mixed solution. This system maintained high efficiency and more than 90 times the enrichment concentration of REIs even after 100 cycles. Ti4+ of TiO2 was reduced to Ti3+ of Ti3O5 under forward voltage in the system, which trapped the electrons of phosphorus site and caused it to be oxidized to phosphate with a strong affinity for REIs, thus improving the selectivity of REIs. Under reverse voltage, Ti3O5 was oxidized to TiO2, which transferred electrons to phosphate and transformed to the phosphorus site, resulting in the desorption and enrichment of REIs and the regeneration of the electrode. This study provides a promising method for the efficient recovery of REIs from wastewater.


Asunto(s)
Electrodos , Metales de Tierras Raras , Fósforo , Titanio , Aguas Residuales , Aguas Residuales/química , Metales de Tierras Raras/química , Fósforo/química , Adsorción , Titanio/química , Contaminantes Químicos del Agua/química , Iones
16.
Ecotoxicol Environ Saf ; 282: 116735, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024954

RESUMEN

Benzovindiflupyr (BEN) has emerged as one of the fastest-growing SDHI fungicides in recent years, but it is considered "very highly toxic" to aquatic fish, invertebrates and crustaceans (EC50 or LC50, 0.0035-0.056 mg/L, acute toxicity). The comprehensive study on bioactivity, toxicity, and degradation behaviors of BEN at the enantiomeric level would facilitate the development of a high-efficiency and low-risk application method. The bioactivities of 1S, 4R-(-)-BEN against five target pathogens (Alternaria alternata, Phoma multirostrata, Selerotium rolfsii, Magnaporthe oryzae, and Rhizoctonia solani) (EC50, 0.00562-0.329 mg/L, high-efficiency) were 6.7-1029 times higher than 1R, 4S-(+)-BEN, demonstrating significant enantioselectivity. For Danio rerio, 1S, 4R-(-)-BEN (LC50, 0.0360 mg/L, "very highly toxic") exhibited higher toxicity than 1 R, 4S-(+)-BEN, but the toxic interaction was concentration addition (TUrac, 0.94), indicating an enhanced toxicity in the presence of 1R, 4S-(+)-BEN. Molecular docking was employed to offer insights at the molecular level and elucidate the factors influencing enantioselectivity. The stronger binding affinity of 1S, 4R-(-)-BEN with SDH was in line with the quantitative experimental findings. The degradation of two BEN enantiomers in four different fruits followed the first-order degradation kinetics equation, and displayed enantioselectivity. The preferential degradation of 1R, 4S-(+)-BEN was found in pears and grapes, while varying enantioselectivity was found at different stages in tomatoes and watermelons. The residual concentrations of BEN in grapes were higher than the EU's MRL, which in the other three fruits were below the MRLs during the sampling. In conclusion, 1S, 4R-(-)-BEN proved to be the more effective monomer. Utilizing the pure monomer could not only reduce the dosage of racemate by about 44-59 %, but also mitigate the risk of introducing inefficient monomer into the environment (especially for fish).


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/toxicidad , Fungicidas Industriales/química , Animales , Estereoisomerismo , Pez Cebra , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Simulación del Acoplamiento Molecular
17.
Artículo en Inglés | MEDLINE | ID: mdl-38833436

RESUMEN

This study addressed primarily the characterisation and quantification of titanium dioxide (TiO2) (nano)particles (NPs) in a large variety of commercial foodstuffs. The samples were purchased from local markets in Spain before the ban of TiO2 food additive (E171) in the EU. The analyses were carried out by single particle inductively coupled plasma-tandem mass spectrometry (spICP-MS/MS) in mass shift mode (oxidation of 48Ti to 48Ti16O (m/z = 64)) and using a highly efficient sample introduction system (APEX™ Ω). This novel analytical approach allowed accurate characterisation of a large panel of TiO2 NPs sizes ranging from ∼12 to ∼800 nm without isobaric interferences from 48Ca isotope, which is highly abundant in most of the analysed foodstuffs. TiO2 NPs were extracted from foodstuffs using sodium dodecyl sulphate (0.1%, w/v) and diluted with ultra-pure water to reach ∼ 1000 particles signals per acquisition. All the analysed samples contained TiO2 NPs with concentrations ranging from 1010 to 1014 particles kg-1, but with significant low recoveries compared to the total Ti determination. A selection of samples was also analysed using a similar spICP-MS/MS approach with a conventional sample introduction system. The comparison of results highlighted the improvement of the limit of detection in size (12 nm) by the APEX™ Ω system, providing nanoparticulate fractions ranging from ∼4% (cheddar sauce) up to ∼87% (chewing gum), which is among the highest nanoparticulate fractions reported in literature using a spICP-MS approach. In addition, two commercially available E171 additives were analysed using the previous approaches and other techniques in different European laboratories with the aim of methods inter-comparison. This study provides occurrence data related to TiO2 NPs in common commercial foodstuffs but it also demonstrates the potential of the novel analytical approach based on APEX™-ICP-MS/MS to characterise nano-size TiO2 particles in complex matrices such as foodstuffs.


Asunto(s)
Aditivos Alimentarios , Análisis de los Alimentos , Espectrometría de Masas en Tándem , Titanio , Titanio/química , Titanio/análisis , Aditivos Alimentarios/análisis , Contaminación de Alimentos/análisis , Tamaño de la Partícula , Nanopartículas/química , Nanopartículas/análisis
18.
ACS Appl Mater Interfaces ; 16(27): 35740-35751, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38918074

RESUMEN

Adsorption-based atmospheric water harvesting (AWH) with solar-driven photothermal desorption has become an effective means of solving freshwater scarcity in arid regions due to its low energy consumption and high efficiency. Moisture adsorption and desorption capacities are the most critical properties in AWH, and it is a challenge to improve the rate of moisture adsorption and desorption of composite adsorbents. Therefore, this paper reports a SA/carboxymethyl chitosan (CCS)/C/CaCl2-U composite aerogel adsorbents with simultaneously green, low-cost, degradable, and fast hygroscopicity and desorption kinetics. The composite adsorbent used water-soluble biomass materials sodium alginate (SA) and carboxymethyl chitosan (CCS) as the backbone of the aerogel, constructed a vertically aligned unidirectional pore structure by directional freezing, and introduced nanocarbon powder and moisture-absorbent salt calcium chloride (CaCl2) to improve the solar photothermal performance and water absorption, respectively. The results showed that the composite adsorbent had good water uptake capacity at 30-90% relative humidity (RH), the time to reach the water uptake of 1 g g-1 at 90% RH was only 2.5 h, and the final water uptake rate was up to 1.9 g g-1 within 12 h. Meanwhile, the composite sorbent can be heated and desorbed basically within 1 h at 80 °C and its evaporation efficiency is 1.3 times higher than that of the aerogel sorbent prepared by the conventional method when irradiated with 1000 W m-2 light intensity for 2 h. Therefore, the SA/CCS/C/CaCl2-U composite aerogel adsorbent of this study has a potential that can be applied in AWH due to its environmental friendliness, low cost, and faster hygroscopic desorption kinetics.

19.
Talanta ; 277: 126297, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823327

RESUMEN

The study of highly heterogeneous tumor cells, especially acute myeloid leukemia (AML) cells, usually relies on invasive analytical methods such as morphology, immunology, cytogenetics, and molecular biology classification, which are complex and time-consuming to perform. Mortality is high if patients are not diagnosed in a timely manner, so rapid label-free analysis of gene expression and metabolites within single-cell substructures is extremely important for clinical diagnosis and treatment. As a label-free and non-destructive vibrational detection technique, spontaneous Raman scattering provides molecular information across the full spectrum of the cell but lacks rapid imaging localization capabilities. In contrast, stimulated Raman scattering (SRS) provides a high-speed, high-resolution imaging view that can offer real-time subcellular localization assistance for spontaneous Raman spectroscopic detection. In this paper, we combined multi-color SRS microscopy with spontaneous Raman to develop a co-localized Raman imaging and spectral detection system (CRIS) for high-speed chemical imaging and quantitative spectral analysis of subcellular structures. Combined with multivariate statistical analysis methods, CRIS efficiently differentiated AML from normal leukocytes with an accuracy of 98.1 % and revealed the differences in the composition of nuclei and cytoplasm of AML relative to normal leukocytes. Compared to conventional Raman spectroscopy blind sampling without imaging localization, CRIS increased the efficiency of single-cell detection by at least three times. In addition, using the same approach for further identification of AML subtypes M2 and M3, we demonstrated that intracytoplasmic differential expression of proteins is a marker for their rapid and accurate classifying. CRIS analysis methods are expected to pave the way for clinical translation of rapid tumor cell identification.


Asunto(s)
Leucemia Mieloide Aguda , Espectrometría Raman , Humanos , Leucemia Mieloide Aguda/patología , Espectrometría Raman/métodos , Análisis de la Célula Individual/métodos
20.
Nano Lett ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832838

RESUMEN

Theoretically, tandem quantum-dot light-emitting diodes (QLEDs) hold great promise for achieving both high efficiency and high stability in display applications. However, in practice, their operational stability remains considerably inferior to that of state-of-the-art devices. In this study, we developed a new tandem structure with optimal electrical and optical performance to simultaneously improve the efficiency and stability of tandem QLEDs. Electrically, upon development of a barrier-free interconnecting layer enabled by an indium-zinc oxide bridging layer and a conductive ZnMgO layer, the driving voltage of the tandem QLEDs is remarkably reduced. Optically, upon development of a top-emitting structure and optimization of the cavity length guided by a theoretical simulation, a maximum light extraction efficiency is achieved. As a result, the red tandem QLEDs exhibit a maximum external quantum efficiency of 49.01% and a T95 lifetime at 1000 cd/m2 of >50 000 h, making them one of the most efficient and stable QLEDs ever reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA