Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 131(6): 1226-1239, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691531

RESUMEN

Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.


Asunto(s)
Interneuronas , Bulbo Olfatorio , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/citología , Animales , Interneuronas/fisiología , Ratones , Neuronas GABAérgicas/fisiología , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Masculino , Ratones Endogámicos C57BL , Potenciales de Acción/fisiología , Inhibición Neural/fisiología , Femenino , Optogenética
2.
J Neurophysiol ; 129(6): 1515-1533, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37222431

RESUMEN

Mitral/tufted cells (M/TCs), the principal output neuron classes form complex circuits with bulbar neurons and long-range centrifugal circuits with higher processing areas such as the horizontal limb of the diagonal band of Broca (HDB). The precise excitability of output neurons is sculpted by local inhibitory circuits. Here, light-gated cation channel channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of evoked postsynaptic currents/potentials of HDB input to all classes of M/TCs and effects on firing in the acute slice preparation. Activation of the HDB directly inhibited all classes of output neurons exhibiting frequency-dependent short-term depression of evoked inhibitory postsynaptic current (eIPSC)/potential (eIPSP), resulting in decreased inhibition of responses to olfactory nerve input as a function of input frequency. In contrast, activation of an indirect circuit of HDB→interneurons→M/TCs induced frequency-dependent disinhibition, resulting in short-term facilitation of evoked excitatory postsynaptic current (eEPSC) eliciting a burst or cluster of spiking in M/TCs. The facilitatory effects of elevated HDB input frequency were strongest on deeper output neurons (deep tufted and mitral cells) and negligible on peripheral output neurons (external and superficial tufted cells). Taken together, GABAergic HDB activation generates frequency-dependent regulation that differentially affects the excitability and responses across the five classes of M/TCs. This regulation may help maintain the precise balance between inhibition and excitation of neuronal circuits across the populations of output neurons in the face of changes in an animal sniffing rate, putatively to enhance and sharpen the tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal circuits in the olfactory bulb closely modulate olfactory bulb output activity. Activation of GABAergic circuits from the HDB to the olfactory bulb has both direct and indirect action differentially across the five classes of M/TC bulbar output neurons. The net effect enhances the excitability of deeper output neurons as HDB frequency increases, altering the relative inhibition-excitation balance of output circuits. We hypothesize that this sharpens the tuning specificity of classes of M/TCs to odors during sensory processing.


Asunto(s)
Odorantes , Bulbo Olfatorio , Animales , Bulbo Olfatorio/fisiología , Sensación , Potenciales Sinápticos , Nervio Olfatorio
3.
J Comp Neurol ; 526(12): 1910-1926, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29700823

RESUMEN

The basal forebrain (BFB) cholinergic neurotransmitter system is important in a number of brain functions including attention, memory, and the sleep-wake cycle. The size of this region has been linked to the increase in encephalization of the brain in a number of species. Cetaceans, particularly those belonging to the family Delphinidae, have a relatively large brain compared to its body size and it is expected that the cholinergic BFB in the dolphin would be a prominent feature. However, this has not yet been explored in detail. This study examines and maps the neuroanatomy and cholinergic chemoarchitecture of the BFB in the Atlantic white-sided dolphin (Lagenorhynchus acutus). As in some other mammals, the BFB in this species is a prominent structure along the medioventral surface of the brain. The parcellation and distribution of cholinergic neural elements of the dolphin BFB was comparable to that observed in other mammals in that it has a medial septal nucleus, a nucleus of the vertical limb of the diagonal band of Broca, a nucleus of the horizontal limb of the diagonal band of Broca, and a nucleus basalis of Meynert. The observed BFB cholinergic system of this dolphin is consistent with evolutionarily conserved and important functions for survival.


Asunto(s)
Prosencéfalo Basal/anatomía & histología , Neuronas Colinérgicas/citología , Delfines/anatomía & histología , Animales , Colina O-Acetiltransferasa/análisis
4.
J Physiol Sci ; 68(4): 415-423, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28500439

RESUMEN

The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.


Asunto(s)
Acetilcolina/metabolismo , Prosencéfalo Basal/fisiología , Bulbo Olfatorio/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Animales , Prosencéfalo Basal/efectos de los fármacos , Ácido Glutámico/farmacología , Masculino , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Ratas , Ratas Wistar , Flujo Sanguíneo Regional/efectos de los fármacos
5.
Behav Brain Res ; 259: 321-9, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24286819

RESUMEN

The effects of LP-211, a selective serotonin 5-HT7 receptor agonist were studied in adult rats implanted for chronic sleep recordings. Intraperitoneal administration of LP-211 (2.5-10mg/kg) during the light phase of the light-dark cycle significantly increased wakefulness (W) and reduced rapid-eye-movement sleep (REMS) and the number of REM periods during the 6-h recording period. Direct infusion of LP-211 into the dorsal raphe nucleus (DRN) (2-6 mM), locus coeruleus nucleus (LC) (4 mM), basal forebrain (horizontal limb of the diagonal band of Broca) (HDB) (2 mM) or laterodorsal tegmental nucleus (LDT) (4 mM) induced also a decrease of REMS. Additionally, microinjection of the 5-HT7 receptor ligand into the HDB (2 mM) augmented W. Presently, there is no satisfactory explanation for the effect of 5-HT7 receptor activation on W and REMS occurrence. Additional studies are required to characterize the neurotransmitter systems responsible for the actions of LP-211 on the behavioral states.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Piperazinas/farmacología , Agonistas de Receptores de Serotonina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Electroencefalografía , Electromiografía , Masculino , Microinyecciones , Ratas , Ratas Wistar , Sueño/efectos de los fármacos , Factores de Tiempo , Vigilia/efectos de los fármacos
6.
Neuroscience ; 252: 443-59, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23985568

RESUMEN

The rat retrosplenial granular cortex (RSG) receives cholinergic input from the medial septum-diagonal band (MS-DB) of the cholinergic basal forebrain (CBF), with projections terminating in layers I-III of RSG. The modulatory effects of acetylcholine (ACh) on cortical GABAergic interneurons in these layers are mediated by α7 nicotinic acetylcholine receptors (α7nAChRs). α7nAChRs are most abundant in the cerebral cortex and are largely localized to GABAergic interneurons. However, the CBF projection to the RSG has not been studied in detail, and the cellular or subcellular distribution of α7nAChRs in the rat RSG remains unclear. The main objective of this study was to test that α7nAChRs reside on GABAergic interneurons in CBF terminal fields of the rat RSG. First, we set out to define the characteristics of CBF projections from the MS-DB to layers of the RSG using anterograde neural tracing and immunohistochemical labeling with cholinergic markers. These results revealed that the pattern of axon terminal labeling in layer Ia, as well as layer II/III of the RSG is remarkably similar to the pattern of cholinergic axons in the RSG. Next, we investigated the relationship between α7nAChRs, labeled using either α-bungarotoxin or α7nAChR antibody, and the local neurochemical environment by labeling surrounding cells with antibodies against glutamic acid decarboxylase (GAD), parvalbumin (PV) and reelin (a marker of the ionotropic serotonin receptor-expressing GABAergic interneurons). α7nAChRs were found to be localized on both somatodendritic and neuronal elements within subpopulations of GABAergic PV-, reelin-stained and non PV-stained neurons in layers I-III of the RSG. Finally, electron microscopy revealed that α7nAChRs are GAD- and PV-positive cytoplasmic and neuronal elements. These results strongly suggest that ACh released from CBF afferents is transmitted via α7nAChR to GAD-, PV-, and reelin-positive GABAergic interneurons in layers I-III of the RSG.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Giro del Cíngulo/metabolismo , Interneuronas/metabolismo , Vías Nerviosas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Masculino , Microscopía Inmunoelectrónica , Ratas , Ratas Wistar , Proteína Reelina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA