Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bio Protoc ; 14(13): e5023, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007158

RESUMEN

In recent years, the increase in genome sequencing across diverse plant species has provided a significant advantage for phylogenomics studies, allowing the analysis of one of the most diverse gene families in plants: nucleotide-binding leucine-rich repeat receptors (NLRs). However, due to the sequence diversity of the NLR gene family, identifying key molecular features and functionally conserved sequence patterns is challenging through multiple sequence alignment. Here, we present a step-by-step protocol for a computational pipeline designed to identify evolutionarily conserved motifs in plant NLR proteins. In this protocol, we use a large-scale NLR dataset, including 1,862 NLR genes annotated from monocot and dicot species, to predict conserved sequence motifs, such as the MADA and EDVID motifs, within the coiled-coil (CC)-NLR subfamily. Our pipeline can be applied to identify molecular signatures that have remained conserved in the gene family over evolutionary time across plant species. Key features • Phylogenomics analysis of plant NLR immune receptor family. • Identification of functionally conserved sequence patterns among plant NLRs.

2.
Dev Comp Immunol ; 159: 105228, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38997096

RESUMEN

Leukocyte immune-type receptors (LITRs) belong to a large family of teleost immunoregulatory receptors that share phylogenetic and syntenic relationships with mammalian Fc receptor-like molecules (FCRLs). Recently, several putative stimulatory Carassius auratus (Ca)-LITR transcripts, including CaLITR3, have been identified in goldfish. CaLITR3 has four extracellular immunoglobulin-like (Ig-like) domains, a transmembrane domain containing a positively charged histidine residue, and a short cytoplasmic tail region. Additionally, the calitr3 transcript is highly expressed by goldfish primary kidney neutrophils (PKNs) and macrophages (PKMs). To further investigate the immunoregulatory potential of CaLITR3 in goldfish myeloid cells, we developed and characterized a CaLITR3-epitope-specific polyclonal antibody (anti-CaL3.D1 pAb). We show that the anti-CaL3.D1 pAb stains various hematopoietic cell types within the goldfish kidney, as well as in PKNs and PKMs. Moreover, cross-linking of the anti-CaL3.D1-pAb on PKN membranes induces phosphorylation of p38 and ERK1/2, critical components of the MAPK pathway involved in controlling a wide variety of innate immune effector responses such as NETosis, respiratory burst, and cytokine release. These findings support the stimulatory potential of CaLITR3 proteins as activators of fish granulocytes and pave the way for a more in-depth examination of the immunoregulatory functions of CaLITRs in goldfish myeloid cells.


Asunto(s)
Proteínas de Peces , Carpa Dorada , Riñón , Sistema de Señalización de MAP Quinasas , Neutrófilos , Receptores Inmunológicos , Animales , Carpa Dorada/inmunología , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Neutrófilos/inmunología , Riñón/inmunología , Riñón/citología , Sistema de Señalización de MAP Quinasas/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Anticuerpos/inmunología , Anticuerpos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Células Cultivadas , Leucocitos/inmunología , Leucocitos/metabolismo
3.
BMC Genomics ; 25(1): 674, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972970

RESUMEN

BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.


Asunto(s)
Consorcios Microbianos , Poríferos , Simbiosis , Transcriptoma , Simbiosis/genética , Poríferos/microbiología , Poríferos/genética , Animales , Consorcios Microbianos/genética , Perfilación de la Expresión Génica , Mar Mediterráneo
4.
Antib Ther ; 7(2): 157-163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38933531

RESUMEN

The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with P. falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system's response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.

5.
Am J Reprod Immunol ; 91(6): e13887, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924299

RESUMEN

PROBLEM: Endometriosis is a prevalent chronic gynecological disease linked to immune dysfunction. The protein T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) plays a crucial role in immune system balance. Malfunction of TIM-3 may result in excessive immune activation and inflammatory tissue damage. Given TIM-3's established role in the development of cancer and autoimmune diseases, we decided to study its role in women suffering from endometriosis. STUDY METHOD: We included a total of 62 female patients, all of whom had undergone laparoscopic surgery. Of these, 47 had endometriosis and 15 did not. During surgery, we collected peritoneal fluid (PF) and peripheral blood (PB) samples from every patient for analysis using flow cytometry. To mark the samples, we used a panel of monoclonal antibodies and examined TIM-3 expression in their immune cells. RESULTS: Endometriosis patients in PB demonstrated a significantly lower percentage of CD56+ T cells with TIM-3 expression. As endometriosis progressed through its stages, this expression lessened. This decrease was particularly notable in women with stage III/IV endometriosis. Additionally, both women diagnosed with intestinal endometriosis and those with recent endometriosis diagnoses showed a significantly reduced percentage of CD56+ T cells expressing TIM-3. CONCLUSIONS: Patients with endometriosis exhibit diminished TIM-3 expression within circulating T cells. This warrants further investigation to discern whether it contributes to the progression of endometriosis, potentially through the amplification of autoreactive T cells and inflammation.


Asunto(s)
Endometriosis , Receptor 2 Celular del Virus de la Hepatitis A , Adulto , Femenino , Humanos , Persona de Mediana Edad , Líquido Ascítico/inmunología , Líquido Ascítico/metabolismo , Endometriosis/inmunología , Endometriosis/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto Joven
6.
FEBS J ; 291(16): 3706-3722, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38840471

RESUMEN

Autophagy dysfunction has been closely related with pathogenesis of many neurodegenerative diseases and therefore represents a potential therapeutic target. Extracellular vesicles (EVs) may act as potent anti-inflammatory agents and also modulators of autophagy in target cells. However, the molecular mechanisms by which EVs modulate autophagy flux in human microglia remain largely unexplored. In the present study, we investigated the effects of EVs derived from human oral mucosa stem cells on the autophagy in human microglia. We demonstrate that EVs promoted autophagy and autophagic flux in human microglia and that this process was dependent on the integrity of lipid rafts. Lipopolysaccharide (LPS) also activated autophagy, but combined treatment with EVs and LPS suppressed autophagy response, indicating interference between these signaling pathways. Blockage of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody suppressed EV-induced autophagy. Furthermore, inhibition of the EV-associated heat shock protein (HSP70) chaperone which is one of the endogenous ligands of the TLR4 also suppressed EV-induced lipid raft formation and autophagy. Pre-treatment of microglia with a selective inhibitor of αvß3/αvß5 integrins cilengitide inhibited EV-induced autophagy. Finally, blockage of purinergic P2X4 receptor (P2X4R) with selective inhibitor 5-BDBD also suppressed EV-induced autophagy. In conclusion, we demonstrate that EVs activate autophagy in human microglia through interaction with HSP70/TLR4, αVß3/αVß5, and P2X4R signaling pathways and that these effects depend on the integrity of lipid rafts. Our findings could be used to develop new therapeutic strategies targeting disease-associated microglia.


Asunto(s)
Autofagia , Vesículas Extracelulares , Lipopolisacáridos , Microdominios de Membrana , Microglía , Receptor Toll-Like 4 , Humanos , Vesículas Extracelulares/metabolismo , Autofagia/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Lipopolisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Células Cultivadas
7.
Life Sci ; 348: 122696, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710279

RESUMEN

The Triggering Receptor Expressed on Myeloid Cells (TREM) family of receptors plays a crucial role in the immune response across various species. Particularly, TREM-1 and TREM-2 have been extensively studied, both in terms of their applications and their expression sites and signaling pathways. However, the same is not observed for the other family members collectively known as TREM-like-transcripts (TREML). The TREML family consists of eight receptors, with TREML1-5 identified in humans and mice, TREML-6 exclusive found in mice, TREML-7 in dogs and horses, and TREML-8 in rabbits and opossums. Despite the limited data available on the TREML members, they have been implicated in different immune and non-immune activities, which have been proposed to display both pro and anti-inflammatory activities, and to influence fundamental biological processes such as coagulation, bone and neurological development. In this review, we have compiled available information regarding the already discovered members of the family and provided foundational framework for understanding the function, localization, and therapeutic potential of all TREML members. Additionally, we hope that this review may shed light on this family of receptors, whose underlying mechanisms are still awaiting elucidation, while emphasizing the need for future studies to explore their functions and potential therapeutic application.


Asunto(s)
Receptores Inmunológicos , Animales , Humanos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Transducción de Señal , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética
8.
Structure ; 32(7): 918-929.e4, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38626767

RESUMEN

Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.


Asunto(s)
Modelos Moleculares , Nectinas , Unión Proteica , Receptores de Superficie Celular , Humanos , Sitios de Unión , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/inmunología , Cristalografía por Rayos X , Ligandos , Nectinas/metabolismo , Nectinas/química , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/química , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
9.
Trends Plant Sci ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38594153

RESUMEN

To resist biotic attacks, plants have evolved a sophisticated, receptor-based immune system. Cell-surface immune receptors, which are either receptor-like kinases (RLKs) or receptor-like proteins (RLPs), form the front line of the plant defense machinery. RLPs lack a cytoplasmic kinase domain for downstream immune signaling, and leucine-rich repeat (LRR)-containing RLPs constitutively associate with the RLK SOBIR1. The RLP/SOBIR1 complex was proposed to be the bimolecular equivalent of genuine RLKs. However, it appears that the molecular mechanisms by which RLP/SOBIR1 complexes and RLKs mount immunity show some striking differences. Here, we summarize the differences between RLP/SOBIR1 and RLK signaling, focusing on the way these receptors recruit the BAK1 co-receptor and elaborating on the negative crosstalk taking place between the two signaling networks.

10.
Biosci Rep ; 44(2)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38299364

RESUMEN

Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.


Asunto(s)
Envejecimiento , Encéfalo , Humanos , Ligandos , Inflamación , Cognición
11.
Small ; 20(10): e2306892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37867244

RESUMEN

Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.


Asunto(s)
Liposomas , Nanopartículas , Poli I-C , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 3 , Animales , Ratones , Humanos , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Adyuvantes Inmunológicos/farmacología
12.
Fish Shellfish Immunol ; 145: 109311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128682

RESUMEN

The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.


Asunto(s)
Peces , Piel , Animales , Membrana Mucosa , Inmunidad Innata , Inmunidad Mucosa
13.
Mem. Inst. Oswaldo Cruz ; 119: e240013, 2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564813

RESUMEN

BACKGROUND The impact of Schistosoma mansoni infection over the immune response and the mechanisms involved in pathogenesis are not yet completely understood. OBJECTIVES This study aimed to evaluate the expression of innate immune receptors in three distinct mouse lineages (BALB/c, C57BL/6 and Swiss) during experimental S. mansoni infection with LE strain. METHODS The parasite burden, intestinal tissue oogram and presence of hepatic granulomas were evaluated at 7- and 12-weeks post infection (wpi). The mRNA expression for innate Toll-like receptors, Nod-like receptors, their adaptor molecules, and cytokines were determined at 2, 7 and 12 wpi in the hepatic tissue by real-time quantitative polymerase chain reaction (qPCR). FINDINGS Swiss mice showed 100% of survival, had lower parasite burden and intestinal eggs, while infected BALB/c and C57BL/6 presented 80% and 90% of survival, respectively, higher parasite burden and intestinal eggs. The three mouse lineages displayed distinct patterns in the expression of innate immune receptors, their adaptor molecules and cytokines, at 2 and 7 wpi. MAIN CONCLUSIONS Our results suggest that the pathogenesis of S. mansoni infection is related to a dynamic early activation of innate immunity receptors and cytokines important for the control of developing worms.

14.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068961

RESUMEN

The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Multiómica , Neoplasias/genética , Receptores Inmunológicos , Pulmón , Genes Reguladores
15.
Arch Microbiol ; 205(10): 347, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778013

RESUMEN

Plants are exposed to a myriad of microorganisms, which can range from helpful bacteria to deadly disease-causing pathogens. The ability of plants to distinguish between helpful bacteria and dangerous pathogens allows them to continuously survive under challenging environments. The investigation of the modulation of plant immunity by beneficial microbes is critical to understand how they impact plant growth improvement and defense against invasive pathogens. Beneficial bacterial populations can produce significant impact on plant immune responses, including regulation of immune receptors activity, MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) activation, transcription factors, and reactive oxygen species (ROS) signaling. To establish themselves, beneficial bacterial populations likely reduce plant immunity. These bacteria help plants to recover from various stresses and resume a regular growth pattern after they have been established. Contrarily, pathogens prevent their colonization by releasing toxins into plant cells, which have the ability to control the local microbiota via as-yet-unidentified processes. Intense competition among microbial communities has been found to be advantageous for plant development, nutrient requirements, and activation of immune signaling. Therefore, to protect themselves from pathogens, plants may rely on the beneficial microbiota in their environment and intercommunity competition amongst microbial communities.


Asunto(s)
Microbiota , Inmunidad de la Planta , Plantas/microbiología , Bacterias , Transducción de Señal , Microbiota/fisiología
16.
Front Immunol ; 14: 1255050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614229
18.
aBIOTECH ; 4(2): 172-175, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37581018

RESUMEN

The evolutionarily conserved Toll/Interleukin-1 Receptor (TIR) domains across kingdoms of prokaryotes, plants, and animals play critical roles in innate immunity. Recent studies have revealed the enzymatic functions of TIRs, the structural bases of TIRs as holoenzymes, and the identity of TIR-generated small signaling molecules and their receptors, which significantly advanced our understanding on TIR-mediated immune signaling pathways. We reviewed the most up-to-date findings in TIR enzymatic functions from the perspectives of signaling molecules and receptor mechanisms.

19.
Biochem Biophys Res Commun ; 677: 31-37, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37542773

RESUMEN

TIGIT (T cell immunoglobulin and ITIM domain) is an inhibitory receptor expressed on T and NK cells that interact with cell surface glycoprotein belonging to the nectin and nectin-like family of cell adhesion molecules, particularly nectin-2 and nectin-like 5 (PVR). Nectin-4 has been recently identified as a novel ligand for TIGIT and the interaction among them inhibits NK cell cytotoxicity. In this study, biophysical experiments were conducted to decipher the mechanism of this novel interaction, followed by structure-guided mutagenesis studies to map the nectin-4 binding interface on TIGIT. Using surface plasmon resonance, we deduced that TIGIT recognizes the membrane distal ectodomain of nectin-4 and the interaction is weaker than the well-characterized TIGIT: nectin-2 interaction. Deciphering the molecular basis of this newly identified interaction between TIGIT and nectin-4 will provide us important insight into the manipulation of this inhibitory signaling pathway, especially targeting cancer cells overexpressing nectin-4 that evade the immune surveillance of the body.


Asunto(s)
Moléculas de Adhesión Celular , Neoplasias , Nectinas/genética , Nectinas/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Receptores Inmunológicos , Células Asesinas Naturales , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo
20.
New Phytol ; 239(5): 1935-1953, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37334551

RESUMEN

Some nucleotide-binding and leucine-rich repeat receptors (NLRs) indirectly detect pathogen effectors by monitoring their host targets. In Arabidopsis thaliana, RIN4 is targeted by multiple sequence-unrelated effectors and activates immune responses mediated by RPM1 and RPS2. These effectors trigger cell death in Nicotiana benthamiana, but the corresponding NLRs have yet not been identified. To identify N. benthamiana NLRs (NbNLRs) that recognize Arabidopsis RIN4-targeting effectors, we conducted a rapid reverse genetic screen using an NbNLR VIGS library. We identified that the N. benthamiana homolog of Ptr1 (Pseudomonas tomato race 1) recognizes the Pseudomonas effectors AvrRpt2, AvrRpm1, and AvrB. We demonstrated that recognition of the Xanthomonas effector AvrBsT and the Pseudomonas effector HopZ5 is conferred independently by the N. benthamiana homolog of Ptr1 and ZAR1. Interestingly, the recognition of HopZ5 and AvrBsT is contributed unequally by Ptr1 and ZAR1 in N. benthamiana and Capsicum annuum. In addition, we showed that the RLCK XII family protein JIM2 is required for the NbZAR1-dependent recognition of AvrBsT and HopZ5. The recognition of sequence-unrelated effectors by NbPtr1 and NbZAR1 provides an additional example of convergently evolved effector recognition. Identification of key components involved in Ptr1 and ZAR1-mediated immunity could reveal unique mechanisms of expanded effector recognition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas/metabolismo , Bacterias/metabolismo , Proteínas Portadoras/metabolismo , Pseudomonas , Receptores Inmunológicos/metabolismo , Proteínas Bacterianas/metabolismo , Pseudomonas syringae/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA