Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Gut Pathog ; 16(1): 55, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354600

RESUMEN

BACKGROUND: Human cryptosporidiosis is distributed worldwide, and it is recognised as a leading cause of acute diarrhoea and death in infants in low- and middle-income countries. Besides immune status, the higher incidence and severity of this gastrointestinal disease in young children could also be attributed to the digestive environment. For instance, human gastrointestinal physiology undergoes significant changes with age, however the role this variability plays in Cryptosporidium parvum pathogenesis is not known. In this study, we analysed for the first time the impact of digestive physicochemical parameters on C. parvum infection in a human and age-dependent context using a dynamic in vitro gastrointestinal model. RESULTS: Our results showed that the parasite excystation, releasing sporozoites from oocysts, occurs in the duodenum compartment after one hour of digestion in both child (from 6 months to 2 years) and adult experimental conditions. In the child small intestine, slightly less sporozoites were released from excystation compared to adult, however they exhibited a higher luciferase activity, suggesting a better physiological state. Sporozoites collected from the child jejunum compartment also showed a higher ability to invade human intestinal epithelial cells compared to the adult condition. Global analysis of the parasite transcriptome through RNA-sequencing demonstrated a more pronounced modulation in ileal effluents compared to gastric ones, albeit showing less susceptibility to age-related digestive condition. Further analysis of gene expression and enriched pathways showed that oocysts are highly active in protein synthesis in the stomach compartment, whereas sporozoites released in the ileum showed downregulation of glycolysis as well as strong modulation of genes potentially related to gliding motility and secreted effectors. CONCLUSIONS: Digestion in a sophisticated in vitro gastrointestinal model revealed that invasive sporozoite stages are released in the small intestine, and are highly abundant and active in the ileum compartment, supporting reported C. parvum tissue tropism. Our comparative analysis suggests that physicochemical parameters encountered in the child digestive environment can influence the amount, physiological state and possibly invasiveness of sporozoites released in the small intestine, thus potentially contributing to the higher susceptibility of young individuals to cryptosporidiosis.

2.
Sci Total Environ ; 934: 173173, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740201

RESUMEN

Despite the well-reported occurrences and established pathways for microplastics (MPs) ingestion by humans, the eventual fate of these particles in the human gastrointestinal system is poorly understood. The present study tries to gain a better understanding of the fate of four common food-borne MPs, i.e. Polystyrene (PS), Polypropylene (PP), Low-density Polyethylene (LDPE), and Nylon, in a simulated in vitro human digestive system. Firstly, the changes in the physicochemical properties of 20-210 µm sized MPs as well as the leaching of chemicals were monitored using fluorescence microscopy, FTIR, and LC-QTOF-MS. Thereafter, the mass loss and morphological alterations in 3-4 mm sized MPs were observed after removing the organic matter. The interaction of PS and PP MPs with duodenal and bile juices manifested in a corona formation. The increase in surface roughness in PP MPs aligned with MP-enzyme dehydrogenation reactions and the addition of NO groups. A few fragments ranging from 30 to 250 µm, with negligible mass loss, were released during the MP digestion process. In addition, the leaching of compounds, e.g. capsi-amide, butanamide, and other plasticizers and monomers was also observed from MPs during digestion, and which may have the potential to accumulate and get absorbed by the digestive organs, and to subsequently impart toxic effects.


Asunto(s)
Microplásticos , Humanos , Digestión , Polietileno , Polipropilenos , Poliestirenos , Sistema Digestivo
3.
Foods ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672926

RESUMEN

Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.

4.
Int J Food Microbiol ; 197: 98-107, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25589362

RESUMEN

Thirty-six microorganisms (twenty-one bacteria, twelve yeasts and three fungi) were isolated from surface-ripened cheeses and subjected to in vitro digestive stress. The approach mimicked gastric and/or duodenal digestion. Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and Saccharomyces boulardii were used as reference strains. We studied the microorganisms grown separately in culture medium and then included (or not) in a rennet gel. The microorganisms' immunomodulatory abilities were also assessed by profiling cytokine induction in human peripheral blood mononuclear cells (PBMCs). The loss of viability was less than 1 log CFU/mL for yeasts under all conditions. In contrast, Gram-negative bacteria survived gastric and/or duodenal stress well but most of the Gram-positive bacteria were more sensitive (especially to gastric stress). Inclusion of sensitive Gram-positive bacteria in rennet gel dramatically improved gastric survival, when compared with a non-included cultured (with a 4 log CFU/mL change in survival). However, the rennet gel did not protect the bacteria against duodenal stress. The PBMC cytokine assay tests showed that the response to yeasts was usually anti-inflammatory, whereas the response to bacteria varied from one strain to another.


Asunto(s)
Queso/microbiología , Digestión , Hongos/fisiología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Células Cultivadas , Hongos/aislamiento & purificación , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Técnicas In Vitro , Viabilidad Microbiana , Levaduras/aislamiento & purificación , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA