Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; : e2404346, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235385

RESUMEN

Magnetic 2D materials offer a promising platform for manipulating quantum states at the nanoscale. Recent studies have underscored the significant influence of 2D magnetic materials on the optical behaviors of transition-metal dichalcogenides (TMDs), revealing phenomena such as interlayer exciton-magnon interactions, magnetization-dependent valley polarization, and an enhanced Zeeman effect. However, the controlled manipulation of anisotropic optical properties in TMDs via magnetism remains challenging. Here, the magnetic ordering in FePS3 profoundly impacts the optical characteristics of WSe2, achieving a giant linear polarization degree of 5.1 in exciton emission is demonstrated. This is supported by a detailed analysis of low-temperature photoluminescence (PL) and Raman spectra from nL-FePS3/WSe2 heterostructures. These findings indicate that a phase transition in FePS3 from paramagnetic to antiferromagnetic enhances interlayer Coulomb interactions, inducing a transition from non-polar to polar behavior in the heterostructures. Additionally, valley-polarized PL spectra under magnetic fields from -9 to 9 T reveal the influence of FePS3 on valley polarization and Zeeman splitting of excitons in monolayer WSe2. These results present a novel strategy for tailoring the optoelectronic properties of 2D magnetic van der Waals heterostructures, paving the way for advancements in nanoscale device design.

2.
Materials (Basel) ; 17(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124394

RESUMEN

In this paper, a single-feed microstrip antenna (MA) equipped with a transmission-mode focusing metasurface (MS) is proposed to achieve dual-polarization capabilities and superior high-gain radiation performance. The original-feed MA comprises two distinct layers of coaxial-fed tangential patches, enabling it to emit a circular polarization (CP) wave with a gain of 3.5 dBic at 5.6 GHz and linear polarization (LP) radiation with a gain of 4 dBi at 13.7 GHz. To improve the performance of the single-feed MA, a dual-polarization transmission focusing MS is proposed and numerically substantiated. By positioning the originally designed MA at the focal point of the MS, we create a transmission-mode MS antenna system capable of achieving CP and LP radiations with the significantly higher gains of 12.9 dBic and 14.8 dBi at 5.6 GHz and 13.7 GHz, respectively. Measurements conducted on the fabricated dual-polarization focusing MS antenna closely align with the simulation results, validating the effectiveness of our approach. This work underscores the significant potential of dual-polarization high-speed data systems and offers a practical solution for enhancing antenna gains in contemporary wireless communication systems.

3.
Nano Lett ; 24(30): 9186-9194, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39012034

RESUMEN

The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.

4.
Adv Mater ; 36(31): e2403017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739121

RESUMEN

A miniature laser with linear polarization is a long sought-after component of photonic integrated circuits. In particular, for multiwavelength polarization lasers, it supports simultaneous access to multiple, widely varying laser wavelengths in a small spatial region, which is of great significance for advancing applications such as optical computing, optical storage, and optical sensing. However, there is a trade-off between the size of small-scale lasers and laser performance, and multiwavelength co-gain of laser media and multicavity micromachining in the process of laser miniaturization remain as significant challenges. Herein, room-temperature linearly polarized multiwavelength lasers in the visible and near-infrared wavelength ranges are demonstrated, by fabricating random cavities scattered with silica in an Er-doped Cs2Ag0.4Na0.6In0.98Bi0.02Cl6 double-perovskite quantum dots gain membrane. By regulating the local symmetry and enabling effective energy transfer in nanocrystals, multiwavelength lasers with ultralow thresholds are achieved at room temperature. The maximum degree of polarization reaches 0.89. With their advantages in terms of miniaturization, ultralow power consumption, and adaptability for integration, these lasers offer a prospective light source for future photonic integrated circuits aimed at high-capacity optical applications.

5.
Materials (Basel) ; 17(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673181

RESUMEN

Biodiesel is a mixture of saturated and unsaturated Fatty Acid Methyl Esters (FAMEs) whose composition affects the corrosion behavior of metal containers during storage. This study examines the effect of the C=C bond present in selected FAMEs (Methyl Stearate, Methyl Oleate, and Methyl Linoleate) in aluminum corrosion in the absence of oxygen. First, mass loss assays were carried out at 100, 200, and 280 °C for 1000 h using pure Methyl Stearate (MS), 5% Methyl Oleate in Methyl Stearate (MS-5% MO), and 5% Methyl Linoleate in Methyl Stearate (MS-5% ML). Next, chemical changes in FAMEs were studied using FTIR, TGA, and GC/MS. SEM/EDS analysis allowed us to inspect the aluminum surfaces and their chemical characterization. We estimated higher corrosion rates for MS assays than those of unsaturated methyl ester mixtures. In a separate set of experiments, we used electrochemical techniques (potentiodynamic polarization, linear polarization resistance, and electrochemical impedance spectroscopy) to investigate aluminum corrosion induced by thermal-degraded products from FAMEs at 100, 200, and 280 °C for 300 h able to dissolve in aqueous extracts. These electrochemical experiments revealed that the products in the aqueous extracts from the unsaturated methyl ester mixture form a passive layer on the Al surface thicker than pure MS at the corresponding degradation temperatures.

6.
Adv Mater ; 36(4): e2304495, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37543837

RESUMEN

Ultracompact chip-integrated single-photon sources of collimated beams with polarization-encoded states are crucial for integrated quantum technologies. However, most of currently available single-photon sources rely on external bulky optical components to shape the polarization and phase front of emitted photon beams. Efficient integration of quantum emitters with beam shaping and polarization encoding functionalities remains so far elusive. Here, ultracompact single-photon sources of linearly polarized vortex beams based on chip-integrated quantum emitter-coupled metasurfaces are presented, which are meticulously designed by fully exploiting the potential of nanobrick-arrayed metasurfaces. The authors first demonstrate on-chip single-photon generation of high-purity linearly polarized vortex beams with prescribed topological charges of 0, - 1, and +1. The multiplexing of single-photon emission channels with orthogonal linear polarizations carrying different topological charges are further realized and their entanglement is demonstarated. The work illustrates the potential and feasibility of ultracompact quantum emitter-coupled metasurfaces as a new quantum optics platform for realizing chip-integrated high-dimensional single-photon sources.

7.
Anal Chim Acta ; 1278: 341722, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709463

RESUMEN

Scattering artifacts are one of the most common effects distorting transmission spectra in Fourier-Transform Infrared spectroscopy. Their increased impact, strongly diminishing the quantitative and qualitative power of IR spectroscopy, is especially observed for structures with a size comparable to the radiation wavelength. To tackle this problem, a wide range of preprocessing techniques based on the Extended Multiplicative Scattering Correction method was developed, using physical properties to remove scattering presence in the spectra. However, until recently those algorithms were mostly focused on spherically shaped samples, for example, cells. Here, an algorithm for samples with cylindrical domains is described, with additional implementation of a linearly polarized light case, which is crucial for the growing field of polarized IR imaging and spectroscopy. An open-source code with GPU based implementation is provided, with a calculation time of several seconds per spectrum. Optimizations done to improve the throughput of this algorithm allow the application of this method into the standard preprocessing pipeline of small datasets.

8.
Materials (Basel) ; 16(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512432

RESUMEN

This paper presents the analysis of how ISP slag addition affects the effectiveness of chloride extraction from self-compacting concrete. Corrosion processes were initiated by chloride ions added to concrete by the method accelerated with an electric field. Corrosion of reinforcement was monitored using the method of linear polarization resistance (LPR). Polarization measurements of steel reinforcement and chloride profiles were analysed to evaluate the effectiveness of electrochemical extraction. Microstructural analysis was conducted on a specimen of concrete after migration and extraction of chlorides. The presence of chloride ions and the application of an electric field during migration were tested with respect to the changed microstructure of concrete evaluated on the basis of image analysis using a scanning electron microscope (SEM). The research contributes to a better understanding of the corrosion processes caused by the presence of chloride ions in concretes in which ISP slag was used as a substitute for sand in various amounts. Thanks to the treatments of concrete with already corroding reinforcement bars, it can be concluded that the moderate replacement of sand with ISP slag limited to 25% allows for the effective inhibition of corrosion processes taking place in these concretes. However, it is not possible to completely withdraw already started corrosion processes in steel. The observations of the microstructure of concrete in which sand was completely replaced with ISP slag indicate that after prolonged use of the chloride extraction process, we can expect a change in the microstructure and the formation of ettringite, which may cause the concrete structure to burst. The obtained information will contribute to the development of modelling methods for chloride ion extraction from a wide range of currently used concretes.

9.
J Phys Condens Matter ; 35(42)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37429290

RESUMEN

Linearly polarized soft x-rays provide information about electronic or magnetic anisotropy through absorption into materials or generation of photoelectrons. In order to change the relative angle between linear polarization and sample crystalline axes, either x-ray polarization or the sample needs to be rotated. Due to difficulties of polarization control in the soft x-ray range, a conventional approach was to rotate the sample. However, this method is not compatible, for example, withoperandomeasurements on non-uniform samples where sample size and rotational motion are severely restricted. At BL07LSU of SPring-8, we developed a new method to rotate the linear polarization angle using a segmented cross undulator. We report an application of this linear polarization rotation to resonant photoemission spectroscopy on an magnetic atomic layer Fe2N on Cu(111) to probe the electronic anisotropy of the 3dstates in the vicinity of the Fermi level.

10.
Materials (Basel) ; 16(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241515

RESUMEN

This study presents a comparison of the protective properties of three concretes of similar composition on the effect of chloride ions. To determine these properties, the values of the diffusion and migration coefficients of chloride ions in concrete were determined using both standard methods and the thermodynamic ion migration model. We tested a comprehensive method for checking the protective properties of concrete against chlorides. This method can not only be used in various concretes, even those with only small differences in composition, but also in concretes with various types of admixtures and additives, such as PVA fibers. The research was carried out to address the needs of a manufacturer of prefabricated concrete foundations. The aim was to find a cheap and effective method of sealing the concrete produced by the manufacturer in order to carry out projects in coastal areas. Earlier diffusion studies showed good performance when replacing ordinary CEM I cement with metallurgical cement. The corrosion rates of the reinforcing steel in these concretes were also compared using the following electrochemical methods: linear polarization and impedance spectroscopy. The porosities of these concretes, determined using X-ray computed tomography for pore-related characterization, were also compared. Changes in the phase composition of corrosion products occurring in the steel-concrete contact zone were compared using scanning electron microscopy with a micro-area chemical analysis capability, in addition to X-ray microdiffraction, to study the microstructure changes. Concrete with CEM III cement was the most resistant to chloride ingress and therefore provided the longest period of protection against chloride-initiated corrosion. The least resistant was concrete with CEM I, for which, after two 7-day cycles of chloride migration in the electric field, steel corrosion started. The additional use of a sealing admixture can cause a local increase in the volume of pores in the concrete, and at the same time, a local weakening of the concrete structure. Concrete with CEM I was characterized as having the highest porosity at 140.537 pores, whereas concrete with CEM III (characterized by lower porosity) had 123.015 pores. Concrete with sealing admixture, with the same open porosity, had the highest number of pores, at 174.880. According to the findings of this study, and using a computed tomography method, concrete with CEM III showed the most uniform distribution of pores of different volumes, and had the lowest total number of pores.

11.
Materials (Basel) ; 16(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676529

RESUMEN

We study the properties of laser-induced periodic surface structures (LIPSS) formed on titanium-doped diamond-like nanocomposite (DLN) a-C:H:Si:O films during ablation processing with linearly-polarized beams of a visible femtosecond laser (wavelength 515 nm, pulse duration 320 fs, pulse repetition rates 100 kHz-2 MHz, scanning beam velocity 0.05-1 m/s). The studies are focused on (i) laser ablation characteristics of Ti-DLN films at different pulse frequencies and constant fluence close to the ablation threshold, (ii) effects of the polarization angle rotation on the properties of low spatial frequency LIPSS (LSFL), and (iii) nanofriction properties of the 'rotating' LIPSS using atomic force microscopy (AFM) in a lateral force mode. It is found that (i) all LSFL are oriented perpendicular to the beam polarization direction, so being rotated with the beam polarization, and (ii) LSFL periods are gradually changed from 360 ± 5 nm for ripples parallel to the beam scanning direction to 420 ± 10 nm for ripples formed perpendicular to the beam scanning. The obtained results are discussed in the frame of the surface plasmon polaritons model of the LIPSS formation. Also, the findings of the nanoscale friction behavior, dependent on the LIPSS orientation relative to the AFM tip scanning direction, are presented and discussed.

12.
Materials (Basel) ; 15(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431491

RESUMEN

Corrosion of reinforcement is a major problem regarding concrete durability. In new structures the corrosion onset can be delayed if additional protection methods are provided as is the case for the addition of corrosion inhibitors in the concrete mix. The main goal of this paper is the evaluation of the effect of the ascorbic acid (AA) as a green steel corrosion inhibitor in cement mortars contaminated by chlorides. Concentration levels of ascorbic acid, ranging from 0.5 to 10-3 mol/L, were added to the mixing water. Electrochemical methods, including corrosion potential (Ecorr), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS), were employed to assess the corrosion rate of the steel embedded in the mortars. The corrosion inhibiting performance of ascorbic acid was compared with that of sodium nitrite. The interaction of the ascorbic acid with the hydrated cement matrix was also evaluated with differential thermal and thermogravimetric analysis (DTA/TG) and pH measurements. The results indicated that, depending on the ascorbic acid concentration, it can be an activator of the corrosion process or an effective corrosion inhibitor in a similar manner to sodium nitrite. A corrosion rate decrease was achieved with concentrations below 10-2 mol/L and the optimum content was 10-3 mol/L. Within this concentration range, the AA does not modify the hydration performance of the cement matrix.

13.
ACS Appl Mater Interfaces ; 14(35): 40223-40231, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998354

RESUMEN

Molecular persistent luminescence, such as room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF), have attracted broad attention in the fields of biological imaging, information security, and optoelectronic devices. However, the development of molecular micro/nanostructures combining both RTP and TADF properties is still in an early stage. Herein, a new type of organic metal hybrid perovskitoid (OMHP) two-dimensional (2D) microcrystal has been fabricated through a facile solution method. The long-lived TADF-RTP dual emission can be highly tuned by changing the excitation wavelength, temperature, and decayed time. Moreover, the 2D OMHP microsheet exhibits an asymmetric and anisotropic optical waveguide with low optical loss coefficient, together with extremely high linearly polarized fluorescence-phosphorescence emission (anisotropy = 0.96), which is promising for the development of polarization-sensitive luminescent materials. Therefore, this work not only demonstrates new OMHP showing colorful persistent luminescence under different modes (such as excitation wavelength, temperature, polarization, lifetime, and dimension) but also takes advantage of the 2D micro/nanostructure to provide potential applications as optical logic gates and for delicate multiple information encryption.

14.
Materials (Basel) ; 15(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35683248

RESUMEN

Zinc protection of galvanized steel is initially dissolved in alkaline solutions. However, a passive layer is formed over time which protects the steel from corrosion. The behavior of galvanized steel exposed to strong alkaline solutions (pH values of 12.7) with a fixed concentration of sulfate ions of 0.04 M is studied here. Electrochemical measurement techniques such as corrosion potential, linear polarization resistance and electrochemical impedance spectroscopy are used. Synergistic effects of sulfate ions are also studied together with other anions such as chloride Cl− or bicarbonate ion HCO3− and with other cations such as calcium Ca2+, ammonium NH4+ and magnesium Mg2+. The presence of sulfate ions can also depassivate the steel, leading to a corrosion current density of 0.3 µA/cm2 at the end of the test. The presence of other ions in the solution increases this effect. The increase in corrosion current density caused by cations and anions corresponds to the following orders (greater to lesser influence): NH4+ > Ca2+ > Mg2+ and HCO3− > Cl− > SO42−.

15.
Adv Mater ; 34(33): e2203766, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35749220

RESUMEN

Polarization-resolved photodetection in a compact footprint is of great interest for ultraminiaturized polarimeters to be used in a wide range of applications. However, probing the states of polarization (SOP) in materials with natural anisotropy are usually weak, limited by the material's natural dichroism or diattenuation. Here, a twisted unipolar-barrier van der Waals heterostructure (vdWH) to construct a bias-switchable polarization detection for retrieval of full SOP (from 0 to 180°) for linear polarized incident light is reported. As a demonstration example, this study realizes the concept in a b-AsP/WS2 /b-AsP vdWH relying on the natural anisotropic properties of the materials without using additional plasmonic/metasurface nanostructures to realize linear polarimetry in the mid-infrared range. Polarimetric imaging is further demonstrated with the developed linear polarimetry by directly displaying the Jones-vector-described SOP distribution of certain target object. This method, with the capabilities of detecting full linear SOP, is promising for the next-generation on-chip miniaturized polarimeters.

16.
ACS Nano ; 16(6): 9535-9545, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35579446

RESUMEN

Rare-earth ion doped crystals are of great significance for microsensing and quantum information, while the ions in the crystals emit light with spontaneous partial polarization, which is, though believed to be originated from the crystal lattice structure, still lacking a deterministic explanation that can be tested with quantitative accuracy. We report experimental evidence showing the profound physical relation between the polarization degree of light emitted by the doped ion and the lattice symmetry by demonstrating, with high precision, that the lattice constant ratio c/a directly quantifies the macroscopic effective polar angle of the electric and magnetic dipoles, which essentially determines the linear polarization degree of the emission. Based on this result, we further propose a pure optical technology to identify the three-dimensional orientation of a rod-shaped single microcrystal using the polarization-resolved microspectroscopy. Our results, demonstrating the physical origin of light polarization in ion-doped crystals, allow work toward on-demand polarization control with crystallography and provide a versatile platform for polarization-based microscale sensing in dynamical systems.

17.
Molecules ; 27(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408511

RESUMEN

The production and use of eco-friendly corrosion inhibitors allows valuable compounds contained in plant waste to be identified and repurposed while reducing the use of polluting synthetic substances. Pectin extracted from Tahiti limes (Citrus latifolia) and King mandarin (Citrus nobilis L.) in addition to natural gums-xanthan gum and latex from the "lechero" plant (Euphorbia laurifolia)-were used to create an eco-friendly corrosion inhibitor. The optimal extraction conditions for pectin were determined from different combinations of pH, temperature, and time in a 23 factorial design and evaluated according to the obtained pectin yield. The highest pectin extraction yields (38.10% and 41.20% from King mandarin and lime, respectively) were reached at pH = 1, 85 °C, and 2 h. Extraction of pectic compounds was confirmed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analyses. Subsequently, a simplex-centroid mixture design was applied to determine the formulation of extracted pectin and natural gums that achieved the highest corrosion inhibitor effect (linear polarization and weight loss methods in NACE 1D-196 saline media using API-5LX52 carbon steel). Impedance spectroscopy analysis showed that the addition of xanthan gum to pectin (formulation 50% pectin-50% xanthan gum) improved the corrosion inhibitor effect from 29.20 to 78.21% at 400 ppm due to higher adsorption of inhibitory molecules on the metal surface.


Asunto(s)
Citrus , Acero , Carbono/química , Corrosión , Ecuador , Pectinas/química , Acero/química
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 121001, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35158137

RESUMEN

The polarization state of the excitation light used in two Raman systems was controlled to study its effect in the unpolarized Raman spectra of unstructured samples. Both systems work in different regions of the electromagnetic spectrum (NIR and visible). Four polarization states (linear, linear at 45° and 90°, and circular) were used to excite liquid samples (ethanol, acetone, and their mixture). The results show that the Raman peaks intensities' ratio varies according to the polarization state of the excitation light. Peaks related to functional groups and C-H stretching modes increase their intensity when circular polarization (CP) is applied. The latter may help to study liquid mixtures with low concentrations. Different polarizing light states give a more detailed spectroscopic analysis since it gathers more structural information of the samples tested in this work with an undefined structure.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos
19.
Sci Total Environ ; 824: 153965, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35182643

RESUMEN

Low and intermediate level radioactive waste produced during the operation and decommissioning of nuclear power plants is disposed of in an underground geological repository. The majority of metallic waste is made of various stainless-steels and carbon steel. Microbial communities and groundwater composition in deep bedrock at repository sites were believed to stay stable over time, allowing the prediction of evolution of the repository environment. However, a two-year survey of chemical components and microbial community composition within deep bedrock revealed changes in both. An in situ corrosion monitoring system was developed to monitor real-time corrosion rates of two stainless-steel grades (AISI 304 and 316) to study the evolution of corrosion, and correlation between environmental changes and corrosion rate. Surprisingly, higher corrosion rates of steel coupons were detected in the higher alloyed stainless-steel grade 316 compared to the lower alloyed grade 304. Pitting was the main corrosion form. Sulphate reducing bacteria and methanogenic archaea were enriched on surfaces of both types of steel coupons. These microbes likely have a role in the corrosion of stainless-steel in this environment. The changes in groundwater conditions and microbial communities within deep bedrock groundwater at this repository site may have implications for the nuclide release and transport of radioactive material and the long-term evolution and safety of this repository and continental repositories in general and thus needs to be thoroughly understood.


Asunto(s)
Agua Subterránea , Microbiota , Corrosión , Acero Inoxidable/química , Acero
20.
Molecules ; 26(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34946501

RESUMEN

Croton lechleri, commonly known as Dragon's blood, is a tree cultivated in the northwest Amazon rainforest of Ecuador and Peru. This tree produces a deep red latex which is composed of different natural products such as phenolic compounds, alkaloids, and others. The chemical structures of these natural products found in C. lechleri latex are promising corrosion inhibitors of admiralty brass (AB), due to the number of heteroatoms and π structures. In this work, three different extracts of C. lechleri latex were obtained, characterized phytochemically, and employed as novel green corrosion inhibitors of AB. The corrosion inhibition efficiency (IE%) was determined in an aqueous 0.5 M HCl solution by potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopy, measuring current density and charge transfer resistance, respectively. In addition, surface characterization of AB was performed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques. Chloroform alkaloid-rich extracts resulted in IE% of 57% at 50 ppm, attributed to the formation of a layer of organic compounds on the AB surface that hindered the dezincification process. The formulation of corrosion inhibitors from C. lechleri latex allows for the valorization of non-edible natural sources and the diversification of the offer of green corrosion inhibitors for the chemical treatment of heat exchangers.


Asunto(s)
Cobre/química , Croton/química , Ácido Clorhídrico/química , Extractos Vegetales/química , Zinc/química , Corrosión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA