RESUMEN
Kidney stones are the most common urinary system diseases, and early identification is of great significance. The purpose of this study was to use routine urine and blood detection indices to build a deep learning (DL) model to identify the presence of kidney stones in the early stage. A retrospective analysis was conducted on patients with kidney stones who were treated at West China Hospital of Sichuan University from January 2020 to June 2023. A total of 1130 individuals presenting with kidney stones and 1230 healthy subjects were enrolled. The first blood and urine laboratory data of participants at our hospital were collected, and the data were divided into a training dataset (80%) and a verification dataset (20%). Additionally, a long short-term memory (LSTM)-based adaptive feature weighting model was trained for the early identification of kidney stones, and the results were compared with those of other models. The performance of the model was evaluated by the area under the subject working characteristic curve (AUC). The important predictive factors are determined by ranking the characteristic importance of the predictive factors. A total of 17 variables were screened; among the top 4 characteristics according to the weight coefficient in this model, urine WBC, urine occult blood, qualitative urinary protein, and microcyte percentage had high predictive value for kidney stones in patients. The accuracy of the kidney stone (KS-LSTM) learning model was 89.5%, and the AUC was 0.95. Compared with other models, it has better performance. The results show that the KS-LSTM model based on routine urine and blood tests can accurately identify the presence of kidney stones. And provide valuable assistance for clinicians to identify kidney stones in the early stage.
Asunto(s)
Aprendizaje Profundo , Cálculos Renales , Humanos , Cálculos Renales/orina , Cálculos Renales/sangre , Cálculos Renales/química , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Urinálisis/métodos , Valor Predictivo de las PruebasRESUMEN
Neurodegenerative diseases severely impact the life of millions of patients worldwide, and their occurrence is more and more increasing proportionally to longer life expectancy. Electroencephalography has become an important diagnostic tool for these diseases, due to its relatively simple procedure, but it requires analyzing a large number of data, often carrying a small fraction of informative content. For this reason, machine learning tools have gained a considerable relevance as an aid to classify potential signs of a specific disease, especially in its early stages, when treatments can be more effective. In this work, long short-term memory-based neural networks with different numbers of units were properly designed and trained after accurate data pre-processing, in order to perform a multi-class detection. To this end, a custom dataset of EEG recordings from subjects affected by five neurodegenerative diseases (Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, progressive supranuclear palsy, and vascular dementia) was acquired. Experimental results show that an accuracy up to 98% was achieved with data belonging to different classes of disease, up to six including the control group, while not requiring particularly heavy computational resources.
Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Enfermedades Neurodegenerativas , Humanos , Electroencefalografía/métodos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/fisiopatología , Procesamiento de Señales Asistido por Computador , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/fisiopatología , Aprendizaje Automático , Algoritmos , Masculino , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/fisiopatología , FemeninoRESUMEN
Synthesis of a 12-lead electrocardiogram from a reduced lead set has previously been extensively studied in order to meet patient comfort, minimise complexity, and enable telemonitoring. Traditional methods relied solely on the inter-lead correlation between the standard twelve leads for learning the models. The 12-lead ECG possesses not only inter-lead correlation but also intra-lead correlation. Learning a model that can exploit this spatio-temporal information in the ECG could generate lead signals while preserving important diagnostic information. The proposed approach takes leverage of the enhanced inter-lead correlation of the ECG signal in the wavelet domain. Long-short-term memory (LSTM) networks, which have emerged as a powerful tool for sequential data mining, are a type of recurrent neural network architecture with an inherent capability to capture the spatiotemporal information of the heart signal. This work proposes the deep learning architecture that utilizes the discrete wavelet transform and the LSTM to reconstruct a generic 12-lead ECG from a reduced lead set. The experimental results are evaluated using different diagnostic measures and similarity metrics. The proposed framework is well founded, and accurate reconstruction is possible as it can capture clinically significant features and provides a robust solution against noise.
RESUMEN
Thermal energy storage (TES) offers a practical solution for reducing industrial operation costs by load-shifting heat demands within industrial processes. In the integrated Thermomechanical pulping process, TES systems within the Energy Hub can provide heat for the paper machine, aiming to minimize electricity costs during peak hours. This strategic use of TES technology ensures more cost-effective and efficient energy consumption management, leading to overall operational savings. This research presents a novel method for optimizing the design and operation of an Energy Hub with TES in the forest industry. The proposed approach for the optimal design involves a comprehensive analysis of the dynamic efficiency, reliability, and availability of system components. The Energy Hub comprises energy conversion technologies such as an electric boiler and a steam generator heat pump. The study examines how the reliability of the industrial Energy Hub system affects operational costs and analyzes the impact of the maximum capacities of its components on system reliability. The method identifies the optimal design point for maximizing system reliability benefits. To optimize the TES system's charging/discharging schedule, an advanced predictive method using time series prediction models, including LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit), has been developed to forecast average daily electricity prices. The results highlight significant benefits from the optimal operation of TES integrated with Energy Hubs, demonstrating a 4.5-6 percent reduction in system operation costs depending on the reference year. Optimizing the Energy Hub design improves system availability, reducing operation costs due to unsupplied demand penalty costs. The system's peak availability can reach 98 %, with a maximum heat pump capacity of 2 MW and an electric boiler capacity of 3.4 MW. The GRU method showed superior accuracy in predicting electricity prices compared to LSTM, indicating its potential as a reliable electricity price predictor within the system.
RESUMEN
The world today has made prescriptive analytics that uses data-driven insights to guide future actions. The distribution of data, however, differs depending on the scenario, making it difficult to interpret and comprehend the data efficiently. Different neural network models are used to solve this, taking inspiration from the complex network architecture in the human brain. The activation function is crucial in introducing non-linearity to process data gradients effectively. Although popular activation functions such as ReLU, Sigmoid, Swish, and Tanh have advantages and disadvantages, they may struggle to adapt to diverse data characteristics. A generalized activation function named the Generalized Exponential Parametric Activation Function (GEPAF) is proposed to address this issue. This function consists of three parameters expressed: α, which stands for a differencing factor similar to the mean; σ, which stands for a variance to control distribution spread; and p, which is a power factor that improves flexibility; all these parameters are present in the exponent. When p=2, the activation function resembles a Gaussian function. Initially, this paper describes the mathematical derivation and validation of the properties of this function mathematically and graphically. After this, the GEPAF function is practically implemented in real-world supply chain datasets. One dataset features a small sample size but exhibits high variance, while the other shows significant variance with a moderate amount of data. An LSTM network processes the dataset for sales and profit prediction. The suggested function performs better than popular activation functions when a comparative analysis of the activation function is performed, showing at least 30% improvement in regression evaluation metrics and better loss decay characteristics.
RESUMEN
Tissue hysteresivity is an important marker for determining the onset and progression of respiratory diseases, calculated from forced oscillation lung function test data. This study aims to reduce the number and duration of required measurements by combining multivariate data from various sensing devices. We propose using the Forced Oscillation Technique (FOT) lung function test in both a low-frequency prototype and the commercial RESMON device, combined with continuous monitoring from the Equivital (EQV) LifeMonitor and processed by artificial intelligence (AI) algorithms. While AI and deep learning have been employed in various aspects of respiratory system analysis, such as predicting lung tissue displacement and respiratory failure, the prediction or forecasting of tissue hysteresivity remains largely unexplored in the literature. In this work, the Long Short-Term Memory (LSTM) model is used in two ways: (1) to estimate the hysteresivity coefficient η using heart rate (HR) data collected continuously by the EQV sensor, and (2) to forecast η values by first predicting the heart rate from electrocardiogram (ECG) data. Our methodology involves a rigorous two-hour measurement protocol, with synchronized data collection from the EQV, FOT, and RESMON devices. Our results demonstrate that LSTM networks can accurately estimate the tissue hysteresivity parameter η, achieving an R2 of 0.851 and a mean squared error (MSE) of 0.296 for estimation, and forecast η with an R2 of 0.883 and an MSE of 0.528, while significantly reducing the number of required measurements by a factor of three (i.e., from ten to three) for the patient. We conclude that our novel approach minimizes patient effort by reducing the measurement time and the overall ambulatory time and costs while highlighting the potential of artificial intelligence methods in respiratory monitoring.
Asunto(s)
Inteligencia Artificial , Mecánica Respiratoria , Humanos , Mecánica Respiratoria/fisiología , Frecuencia Cardíaca/fisiología , Algoritmos , Pruebas de Función Respiratoria/métodos , Pruebas de Función Respiratoria/instrumentación , Pronóstico , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Electrocardiografía/métodosRESUMEN
In urban road environments, global navigation satellite system (GNSS) signals may be interrupted due to occlusion by buildings and obstacles, resulting in reduced accuracy and discontinuity of combined GNSS/inertial navigation system (INS) positioning. Improving the accuracy and robustness of combined GNSS/INS positioning systems for land vehicles in the presence of GNSS interruptions is a challenging task. The main objective of this paper is to develop a method for predicting GNSS information during GNSS outages based on a long short-term memory (LSTM) neural network to assist in factor graph-based combined GNSS/INS localization, which can provide a reliable combined localization solution during GNSS signal outages. In an environment with good GNSS signals, a factor graph fusion algorithm is used for data fusion of the combined positioning system, and an LSTM neural network prediction model is trained, and model parameters are determined using the INS velocity, inertial measurement unit (IMU) output, and GNSS position incremental data. In an environment with interrupted GNSS signals, the LSTM model is used to predict the GNSS positional increments and generate the pseudo-GNSS information and the solved results of INS for combined localization. In order to verify the performance and effectiveness of the proposed method, we conducted real-world road test experiments on land vehicles installed with GNSS receivers and inertial sensors. The experimental results show that, compared with the traditional combined GNSS/INS factor graph localization method, the proposed method can provide more accurate and robust localization results even in environments with frequent GNSS signal loss.
RESUMEN
The global impact of the ongoing COVID-19 pandemic, while somewhat contained, remains a critical challenge that has tested the resilience of humanity. Accurate and timely prediction of COVID-19 transmission dynamics and future trends is essential for informed decision-making in public health. Deep learning and mathematical models have emerged as promising tools, yet concerns regarding accuracy persist. This research suggests a novel model for forecasting the COVID-19's future trajectory. The model combines the benefits of machine learning models and mathematical models. The SIRVD model, a mathematical based model that depicts the reach of the infection via population, serves as basis for the proposed model. A deep prediction model for COVID-19 using XGBoost-SIRVD-LSTM is presented. The suggested approach combines Susceptible-Infected-Recovered-Vaccinated-Deceased (SIRVD), and a deep learning model, which includes Long Short-Term Memory (LSTM) and other prediction models, including feature selection using XGBoost method. The model keeps track of changes in each group's membership over time. To increase the SIRVD model's accuracy, machine learning is applied. The key properties for forecasting the spread of the infection are found using a method called feature selection. Then, in order to learn from these features and create predictions, a model involving deep learning is applied. The performance of the model proposed was assessed with prediction metrics such as R 2, root mean square error (RMSE), mean absolute percentage error (MAPE), and normalized root mean square error (NRMSE). The results are also validated to those of other prediction models. The empirical results show that the suggested model outperforms similar models. Findings suggest its potential as a valuable tool for pandemic management and public health decision-making.
RESUMEN
Ultrafiltration (UF) is widely employed for harmful algae rejection, whereas severe membrane fouling hampers its long-term operation. Herein, calcium peroxide (CaO2) and ferrate (Fe(VI)) were innovatively coupled for low-damage removal of algal contaminants and fouling control in the UF process. As a result, the terminal J/J0 increased from 0.13 to 0.66, with Rr and Rir respectively decreased by 96.74 % and 48.47 %. The cake layer filtration was significantly postponed, and pore blocking was reduced. The ζ-potential of algal foulants was weakened from -34.4 mV to -18.7 mV, and algal cells of 86.15 % were removed with flocs of 300 µm generated. The cell integrity was better remained in comparison to the Fe(VI) treatment, and Fe(IV)/Fe(V) was verified to be the dominant reactive species. The membrane fouling alleviation mechanisms could be attributed to the reduction of the fouling loads and the changes in the interfacial free energies. A membrane fouling prediction model was built based on a long short-term memory deep learning network, which predicted that the filtration volume at J/J0= 0.2 increased from 288 to 1400 mL. The results provide a new routine for controlling algal membrane fouling from the perspective of promoting the generation of Fe(IV)/Fe(V) intermediates.
Asunto(s)
Hierro , Membranas Artificiales , Peróxidos , Hierro/química , Peróxidos/química , Ultrafiltración/métodos , Purificación del Agua/métodos , Incrustaciones Biológicas/prevención & controlRESUMEN
Estimation of mental workload from electroencephalogram (EEG) signals aims to accurately measure the cognitive demands placed on an individual during multitasking mental activities. By analyzing the brain activity of the subject, we can determine the level of mental effort required to perform a task and optimize the workload to prevent cognitive overload or underload. This information can be used to enhance performance and productivity in various fields such as healthcare, education, and aviation. In this paper, we propose a method that uses EEG and deep neural networks to estimate the mental workload of human subjects during multitasking mental activities. Notably, our proposed method employs subject-independent classification. We use the "STEW" dataset, which consists of two tasks, namely "No task" and "simultaneous capacity (SIMKAP)-based multitasking activity". We estimate the different workload levels of two tasks using a composite framework consisting of brain connectivity and deep neural networks. After the initial preprocessing of EEG signals, an analysis of the relationships between the 14 EEG channels is conducted to evaluate effective brain connectivity. This assessment illustrates the information flow between various brain regions, utilizing the direct Directed Transfer Function (dDTF) method. Then, we propose a deep hybrid model based on pre-trained Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) for the classification of workload levels. The accuracy of the proposed deep model achieved 83.12% according to the subject-independent leave-subject-out (LSO) approach. The pre-trained CNN + LSTM approaches to EEG data have been found to be an accurate method for assessing the mental workload.
RESUMEN
As Europe integrates more renewable energy resources, notably offshore wind power, into its super meshed grid, the demand for reliable long-distance High Voltage Direct Current (HVDC) transmission systems has surged. This paper addresses the intricacies of HVDC systems built upon Modular Multi-Level Converters (MMCs), especially concerning the rapid rise of DC fault currents. We propose a novel fault identification and classification for DC transmission lines only by employing Long Short-Term Memory (LSTM) networks integrated with Discrete Wavelet Transform (DWT) for feature extraction. Our LSTM-based algorithm operates effectively under challenging environmental conditions, ensuring high fault resistance detection. A unique three-level relay system with multiple time windows (1 ms, 1.5 ms, and 2 ms) ensures accurate fault detection over large distances. Bayesian Optimization is employed for hyperparameter tuning, streamlining the model's training process. The study shows that our proposed framework exhibits 100% resilience against external faults and disturbances, achieving an average recognition accuracy rate of 99.04% in diverse testing scenarios. Unlike traditional schemes that rely on multiple manual thresholds, our approach utilizes a single intelligently tuned model to detect faults up to 480 ohms, enhancing the efficiency and robustness of DC grid protection.
RESUMEN
Human activity recognition (HAR) is a crucial task in various applications, including healthcare, fitness, and the military. Deep learning models have revolutionized HAR, however, their computational complexity, particularly those involving BiLSTMs, poses significant challenges for deployment on resource-constrained devices like smartphones. While BiLSTMs effectively capture long-term dependencies by processing inputs bidirectionally, their high parameter count and computational demands hinder practical applications in real-time HAR. This study investigates the approximation of the computationally intensive BiLSTM component in a HAR model by using a combination of alternative model components and data flipping augmentation. The proposed modifications to an existing hybrid model architecture replace the BiLSTM with standard and residual LSTM, along with convolutional networks, supplemented by data flipping augmentation to replicate the context awareness typically provided by BiLSTM networks. The results demonstrate that the residual LSTM (ResLSTM) model achieves superior performance while maintaining a lower computational complexity compared to the traditional BiLSTM model. Specifically, on the UCI-HAR dataset, the ResLSTM model attains an accuracy of 96.34% with 576,702 parameters, outperforming the BiLSTM model's accuracy of 95.22% with 849,534 parameters. On the WISDM dataset, the ResLSTM achieves an accuracy of 97.20% with 192,238 parameters, compared to the BiLSTM's 97.23% accuracy with 283,182 parameters, demonstrating a more efficient architecture with minimal performance trade-off. For the KU-HAR dataset, the ResLSTM model achieves an accuracy of 97.05% with 386,038 parameters, showing comparable performance to the BiLSTM model's 98.63% accuracy with 569,462 parameters, but with significantly fewer parameters.
Asunto(s)
Aprendizaje Profundo , Actividades Humanas , Humanos , Redes Neurales de la Computación , Algoritmos , Teléfono InteligenteRESUMEN
The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.
RESUMEN
Accurate and rapid prediction of water quality is crucial for the protection of aquatic ecosystems. This study aims to enhance the prediction of total phosphorus (TP) concentrations in the middle reaches of the Yangtze River by integrating advanced modeling techniques. Using operational and discharge data from the Three Gorges Reservoir (TGR), along with water quality parameters from downstream sections, we used Grey Relational Analysis (GRA) to rank the factors contributing to TP concentrations. The analysis identified turbidity, permanganate index (CODMn), total nitrogen (TN), water temperature, chlorophyll a, upstream water level variation, and discharge from the Three Gorges Dam (TGD) as the top contributors. Subsequently, a coupled neural network model was established, incorporating these key contributors, to predict TP concentrations under the dynamic water level control during flood periods in the TGR. The proposed GRA-CEEMDAN-CN1D-LSTM-DBO model was compared with conventional models, including BP, LSTM, and GRU. The results indicated that the GRA-CEEMDAN-CN1D-LSTM-DBO model significantly outperformed the others, achieving a correlation coefficient (R) of 0.784 and a root mean square error (RMSE) of 0.004, compared to 0.58 (R) and 0.007 (RMSE) for the LSTM model, 0.576 (R) and 0.007 (RMSE) for the BP model, and 0.623 (R) and 0.006 (RMSE) for the GRU model. The model's accuracy and applicability further validated in two sections: YC (Yunchi) in Yichang City and LK (Liukou) in Jingzhou City, where it performed satisfactorily in predicting TP in YC (R = 0.776, RMSE = 0.007) and LK (R = 0.718, RMSE = 0.007). Additionally, deep learning analysis revealed that as the distance away from dam increased, prediction accuracy gradually decreased, indicating a reduced impact of TGR operations on downstream TP concentrations. In conclusion, the GRA-CEEMDAN-CN1D-LSTM-DBO model demonstrates superior performance in predicting TP concentration in the middle reaches of the Yangtze River, offering valuable insights for dynamic water level control during flood seasons and contributing of smart to the advancement of water management in the Yangtze River.
RESUMEN
Air pollution in industrial environments, particularly in the chrome plating process, poses significant health risks to workers due to high concentrations of hazardous pollutants. Exposure to substances like hexavalent chromium, volatile organic compounds (VOCs), and particulate matter can lead to severe health issues, including respiratory problems and lung cancer. Continuous monitoring and timely intervention are crucial to mitigate these risks. Traditional air quality monitoring methods often lack real-time data analysis and predictive capabilities, limiting their effectiveness in addressing pollution hazards proactively. This paper introduces a real-time air pollution monitoring and forecasting system specifically designed for the chrome plating industry. The system, supported by Internet of Things (IoT) sensors and AI approaches, detects a wide range of air pollutants, including NH3, CO, NO2, CH4, CO2, SO2, O3, PM2.5, and PM10, and provides real-time data on pollutant concentration levels. Data collected by the sensors are processed using LSTM, Random Forest, and Linear Regression models to predict pollution levels. The LSTM model achieved a coefficient of variation (R²) of 99â¯% and a mean absolute percentage error (MAE) of 0.33 for temperature and humidity forecasting. For PM2.5, the Random Forest model outperformed others, achieving an R² of 84â¯% and an MAE of 10.11. The system activates factory exhaust fans to circulate air when high pollution levels are predicted to occur in the next hours, allowing for proactive measures to improve air quality before issues arise. This innovative approach demonstrates significant advancements in industrial environmental monitoring, enabling dynamic responses to pollution and improving air quality in industrial settings.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Predicción , Material Particulado , Monitoreo del Ambiente/métodos , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Internet de las Cosas , Inteligencia Artificial , Compuestos Orgánicos Volátiles/análisis , IndustriasRESUMEN
Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.
RESUMEN
Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.
Asunto(s)
Aprendizaje Profundo , Mutación , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Progresión de la EnfermedadRESUMEN
Morse code recognition plays a very important role in the application of human-machine interaction. In this paper, based on the carbon nanotube (CNT) and polyurethane sponge (PUS) composite material, a flexible tactile CNT/PUS sensor with great piezoresistive characteristic is developed for detecting Morse code precisely. Thirty-six types of Morse code, including 26 letters (A-Z) and 10 numbers (0-9), are applied to the sensor. Each Morse code was repeated 60 times, and 2160 (36 × 60) groups of voltage time-sequential signals were collected to construct the dataset. Then, smoothing and normalization methods are used to preprocess and optimize the raw data. Based on that, the long short-term memory (LSTM) model with excellent feature extraction and self-adaptive ability is constructed to precisely recognize different types of Morse code detected by the sensor. The recognition accuracies of the 10-number Morse code, the 26-letter Morse code, and the whole 36-type Morse code are 99.17%, 95.37%, and 93.98%, respectively. Meanwhile, the Gated Recurrent Unit (GRU), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Random Forest (RF) models are built to distinguish the 36-type Morse code (letters of A-Z and numbers of 0-9) based on the same dataset and achieve the accuracies of 91.37%, 88.88%, 87.04%, and 90.97%, respectively, which are all lower than the accuracy of 93.98% based on the LSTM model. All the experimental results show that the CNT/PUS sensor can detect the Morse code's tactile feature precisely, and the LSTM model has a very efficient property in recognizing Morse code detected by the CNT/PUS sensor.
RESUMEN
The escalating growth of the global population has led to degraded water quality, particularly in seawater environments. Water quality monitoring is crucial to understanding the dynamic changes and implementing effective management strategies. In this study, water samples from the southwestern regions of Iran were spatially analyzed in a GIS environment using geostatistical methods. Subsequently, a water quality map was generated employing large and small fuzzy membership functions. Additionally, advanced prediction models using neural networks were employed to forecast future water pollution trends. Fuzzy method results indicated higher pollution levels in the northern regions of the study area compared to the southern parts. Furthermore, the water quality prediction models demonstrated that the LSTM model exhibited superior predictive performance (R2 = 0.93, RMSE = 0.007). The findings also underscore the impact of urbanization, power plant construction (2010 to 2020), and inadequate urban wastewater management on water pollution in the studied region.
Asunto(s)
Aprendizaje Profundo , Monitoreo del Ambiente , Lógica Difusa , Redes Neurales de la Computación , Calidad del Agua , Monitoreo del Ambiente/métodos , Irán , Contaminación del Agua/estadística & datos numéricos , Agua de Mar/químicaRESUMEN
Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.