Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 15(1): 98, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987834

RESUMEN

BACKGROUND: The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens. Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition, but this also decreases the laying performance of hens. This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies. A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group (positive control: CK) or 1 of 3 groups: low-energy and low-protein diet (LL), normal-energy and low-protein diet (NL), and high-energy and low-protein diet (HL) groups. The energy-to-protein ratios of the CK, LL, NL, and HL diets were 0.67, 0.74, 0.77, and 0.80, respectively. RESULTS: Compared with the CK group, egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet. Hens fed LL, NL, and HL diets had significantly higher triglyceride, total cholesterol, acetyl-CoA carboxylase, and fatty acid synthase levels, but significantly lower hepatic lipase levels compared with the CK group. Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation (ACOX1, HADHA, EHHADH, and ACAA1) were downregulated, whereas genes related to fatty acid synthesis (SCD, FASN, and ACACA) were upregulated in LL group compared with the CK group. Comparison of the cecal microbiome showed that in hens fed an LL diet, Lactobacillus and Desulfovibrio were enriched, whereas riboflavin metabolism was suppressed. Cecal metabolites that were most significantly affected by the LL diet included several vitamins, such as riboflavin (vitamin B2), pantethine (vitamin B5 derivative), pyridoxine (vitamin B6), and 4-pyridoxic acid. CONCLUSION: A lipid metabolism disorder due to deficiencies of vitamin B2 and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet. Based on the present study, we propose that targeting vitamin B2 and pantethine (vitamin B5 derivative) might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet.

2.
Sci Rep ; 14(1): 16883, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043767

RESUMEN

The state of Maternal Protein Malnutrition (MPM) is associated with several deleterious effects, including inflammatory processes and dysregulation in oxidative balance, which can promote neurodegeneration. On the other hand, it is known that aerobic exercise can promote systemic health benefits, combating numerous chronic diseases. Therefore, we evaluate the effect of aerobic exercise training (AET) on indicators of mitochondrial bioenergetics, oxidative balance, endoplasmic reticulum stress, and neurotrophic factor in the prefrontal cortex of malnourished juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17% or 8% casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein Control (LS), Low-Protein Trained (LT), Normoprotein Control (NS), and Normoprotein Trained (NT). The trained groups performed an AET for 4 weeks, 5 days a week, 1 h a day per session. At 60 days of life, the animals were sacrificed and the skeletal muscle, and prefrontal cortex (PFC) were removed to evaluate the oxidative metabolism markers and gene expression of ATF-6, GRP78, PERK and BDNF. Our results showed that MPM impairs oxidative metabolism associated with higher oxidative and reticulum stress. However, AET restored the levels of indicators of mitochondrial bioenergetics, in addition to promoting resilience to cellular stress. AET at moderate intensity for 4 weeks in young Wistar rats can act as a non-pharmacological intervention in fighting against the deleterious effects of a protein-restricted maternal diet.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Mitocondrias , Estrés Oxidativo , Condicionamiento Físico Animal , Ratas Wistar , Animales , Femenino , Ratas , Mitocondrias/metabolismo , Embarazo , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estrés del Retículo Endoplásmico , Biomarcadores/metabolismo , Corteza Prefrontal/metabolismo , Músculo Esquelético/metabolismo , Desnutrición/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Factor de Transcripción Activador 6/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000480

RESUMEN

The regulation of the circadian clock plays an important role in influencing physiological conditions. While it is reported that the timing and quantity of energy intake impact circadian regulation, the underlying mechanisms remain unclear. This study investigated the impact of dietary protein intake on peripheral clocks. Firstly, transcriptomic analysis was conducted to investigate molecular targets of low-protein intake. Secondly, mPer2::Luc knock-in mice, fed with either a low-protein, normal, or high-protein diet for 6 weeks, were analyzed for the oscillation of PER2 expression in peripheral tissues and for the expression profiles of circadian and metabolic genes. Lastly, the candidate pathway identified by the in vivo analysis was validated using AML12 cells. As a result, using transcriptomic analysis, we found that the low-protein diet hardly altered the circadian rhythm in the central clock. In animal experiments, expression levels and period lengths of PER2 were different in peripheral tissues depending on dietary protein intake; moreover, mRNA levels of clock-controlled genes and endoplasmic reticulum (ER) stress genes were affected by dietary protein intake. Induction of ER stress in AML12 cells caused an increased amplitude of Clock and Bmal1 and an advanced peak phase of Per2. This result shows that the intake of different dietary protein ratios causes an alteration of the circadian rhythm, especially in the peripheral clock of mice. Dietary protein intake modifies the oscillation of ER stress genes, which may play key roles in the regulation of the circadian clock.


Asunto(s)
Ritmo Circadiano , Proteínas en la Dieta , Proteínas Circadianas Period , Animales , Ratones , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas en la Dieta/administración & dosificación , Estrés del Retículo Endoplásmico , Relojes Circadianos/genética , Masculino , Ratones Endogámicos C57BL , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Perfilación de la Expresión Génica , Línea Celular , Transcriptoma
4.
Front Nutr ; 11: 1383658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988853

RESUMEN

Background: High dietary protein intake exacerbates proteinuria in individuals with diabetic kidney disease (DKD). However, studies on the impacts of low protein diet (LPD) on DKD have yielded conflicting results. Furthermore, patient compliance to continuous protein restriction is challenging. Objective: The current study aims to investigate the effects of intermittent protein restriction (IPR) on disease progression of DKD. Methods: Diabetic KK-Ay mice were used in this study. For the IPR treatment, three consecutive days of LPD were followed by four consecutive days of normal protein diet (NPD) within each week. For early intervention, mice received IPR before DKD onset. For late intervention, mice received IPR after DKD onset. In both experiments, age-matched mice fed continuous NPD served as the control group. Kidney morphology, structure and function of mice in different groups were examined. Results: Intermittent protein restriction before DKD onset ameliorated pathological changes in kidney, including nephromegaly, glomerular hyperfiltration, tubular injuries and proteinuria, without improving glycemic control. Meanwhile, IPR initiated after DKD onset showed no renoprotective effects despite improved glucose homeostasis. Conclusion: Intermittent protein restriction before rather than after DKD onset protects kidneys, and the impacts of IPR on the kidneys are independent of glycemic control. IPR shows promise as an effective strategy for managing DKD and improving patient compliance.

5.
Cell Rep ; 43(8): 114493, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39028622

RESUMEN

Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.

6.
Nutrients ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39064671

RESUMEN

Low-protein diets (LPDs) seem to improve metabolic complications of advanced CKD, thus postponing kidney replacement therapy (KRT) initiation. However, the nutritional safety of LPDs remains debatable in patients with diabetic kidney disease (DKD), especially in the elderly. This is a sub-analysis of a prospective unicentric interventional study which assessed the effects of LPD in patients with advanced DKD, focusing on the feasibility and safety of LPD in elderly patients. Ninety-two patients with DKD and stable CKD stage 4+, proteinuria >3 g/g creatininuria, good nutritional status, with confirmed compliance to protein restriction, were enrolled and received LPD (0.6 g mixed proteins/kg-day) supplemented with ketoanalogues of essential amino acids for 12 months. Of the total group, 42% were elderly with a median eGFR 12.6 mL/min and a median proteinuria 5.14 g/g creatininuria. In elderly patients, proteinuria decreased by 70% compared to baseline. The rate of kidney function decline was 0.1 versus 0.5 mL/min-month before enrolment. Vascular events occurred in 15% of cases, not related to nutritional intervention, but to the severity of CKD and higher MAP. LPDs seem to be safe and effective in postponing KRT in elderly patients with advanced DKD while preserving the nutritional status.


Asunto(s)
Nefropatías Diabéticas , Dieta con Restricción de Proteínas , Proteinuria , Humanos , Dieta con Restricción de Proteínas/métodos , Anciano , Masculino , Femenino , Nefropatías Diabéticas/dietoterapia , Estudios Prospectivos , Proteinuria/dietoterapia , Persona de Mediana Edad , Anciano de 80 o más Años , Tasa de Filtración Glomerular , Resultado del Tratamiento , Estado Nutricional , Insuficiencia Renal Crónica/dietoterapia , Aminoácidos Esenciales/administración & dosificación
7.
Arch Anim Nutr ; 78(2): 192-207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39047153

RESUMEN

A 4-week study was conducted to evaluate the effects of dietary crude protein (CP) content and resistant starch (RS) supplementation on growth performance, intestinal histomorphology and microbial metabolites of weaned pigs. A total of 96 pigs (7.06 ± 0.45 kg body weight) were assigned to 1 of 4 diets in a randomised complete block design involving a 2 (CP levels) × 2 (without or with RS) factorial arrangement to give 8 replicate pens and 3 pigs per pen. Body weight and feed disappearance were recorded weekly, and the faecal consistency score was determined every morning. Blood was sampled on days 1, 14 and 28 from one pig per pen, and the same pig was euthanised on day 28 to collect ileal tissue and ileal and colon digesta. Data were analysed using the MIXED procedure of SAS. The average daily gain and gain:feed ratio were lower (p < 0.05) in pigs fed low crude protein (LCP) diets compared to those fed high CP (HCP) diets during week 3 and overall period. The analysed Lys, Met+Cys and Thr in feed were lower than calculated values, particularly in LCP diets, which may have affected performance. Pigs fed the LCP diets had longer (p < 0.05) ileal villi and higher villus height to crypt depth ratios than those fed the HCP diets, and RS supplementation increased (p < 0.05) ileal villus height. Interactions (p < 0.05) between dietary CP content and RS inclusion were observed for short-chain fatty acid concentration in the ileum and colon in phase 2. There was no difference in propionic acid (ileum) or butyric acid (colon) concentrations among pigs fed HCP diets, however, the butyric acid concentration increased in pigs fed the LCP diet when supplemented with RS. Reducing dietary CP lowered (p < 0.05) faecal score, plasma urea nitrogen and digesta ammonia content. Overall, feeding LCP diets reduced growth performance but improved gut morphology in weaned pigs. Feeding the LCP diet with RS supplementation modulated concentrations of ileal propionic acid and colonic butyric acid in weaned pigs.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Proteínas en la Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Distribución Aleatoria , Sus scrofa/fisiología , Sus scrofa/crecimiento & desarrollo , Sus scrofa/anatomía & histología , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Almidón/metabolismo , Almidón/administración & dosificación , Destete , Femenino , Porcinos/crecimiento & desarrollo , Porcinos/fisiología
8.
Anim Nutr ; 18: 57-71, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39035982

RESUMEN

Dietary nutrient manipulation (e.g. protein fractions) could lower the environmental footprints of ruminants, especially reactive nitrogen (N). This study investigated the impacts of dietary soluble protein (SP) levels with decreased crude protein (CP) on intestinal N absorption, hindgut N metabolism, fecal microbiota and metabolites, and their linkage with N metabolism phenotype. Thirty-two male Hu sheep, with an age of six months and an initial BW of 40.37 ± 1.18 kg, were randomly assigned to four dietary groups. The control diet (CON), aligning with NRC standards, maintained a CP content of 16.7% on a dry matter basis. Conversely, the experimental diets (LPA, LPB, and LPC) featured a 10% reduction in CP compared with CON, accompanied by SP adjustments to 21.2%, 25.9%, and 29.4% of CP, respectively. Our results showed that low-protein diets led to significant reductions in the concentrations of plasma creatinine, ammonia, urea N, and fecal total short-chain fatty acids (SCFA) (P < 0.05). Notably, LPB and LPC exhibited increased total SCFA and propionate concentrations compared with LPA (P < 0.05). The enrichment of the Prevotella genus in fecal microbiota associated with energy metabolism and amino acid (AA) biosynthesis pathways was evident with SP levels in low-protein diets of approximately 25% to 30%. Moreover, LPB and LPC diets demonstrated a decrease in fecal NH 4 + -N and NO 2 - -N contents as well as urease activity, compared with CON (P < 0.05). Concomitantly, reductions in fecal glutamic acid dehydrogenase gene (gdh), nitrite reductase gene (nirS), and nitric oxide reductase gene (norB) abundances were observed (P < 0.05), pointing towards a potential reduction in reactive N production at the source. Of significance, the up-regulation of mRNA abundance of AA and peptide transporters in the small intestine (duodenum, jejunum, and ileum) and the elevated concentration of plasma AA (e.g. arginine, methionine, aspartate, glutamate, etc.) underscored the enhancement of N absorption and N efficiency. In summary, a 10% reduction in CP, coupled with an SP level of approximately 25% to 30%, demonstrated the potential to curtail reactive N emissions through fecal Prevotella enrichment and improve intestinal energy and N utilization efficiency.

10.
Animals (Basel) ; 14(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38929349

RESUMEN

Organic livestock farming is committed to high environmental and animal welfare standards, although pathologies such as post-weaning diarrhoea (PWD) may appear. The main objective of this study was to assess nutritional strategies to prevent PWD in organic piglets. A total of 134 weaned piglets were fed one of three diets: high crude protein (17.8%, HCP), low crude protein (16.8%, LCP), and low crude protein supplemented with liquid whey (LCP+W). Piglets were assessed weekly for four weeks on the following parameters: diarrhoea incidence, additional health parameters, average daily gain, and behaviour. Faecal samples were taken to analyse the intestinal microbiota composition. Data were analysed using LMM and GLMM models and Shannon and Whittaker indexes. No significant effect of diet on diarrhoea incidence was found, but the LCP+W diet increased average daily gain. Pigs fed the LCP+W diet presented a lower percentage of drinking and negative social behaviour compared with the HCP diet, and LCP pigs presented higher exploration compared with HCP. In addition, LCP+W piglets showed a higher abundance of the beneficial genus Frisingicoccus. Although liquid whey did not reduce diarrhoea incidence, the benefits found in growth, microbiota composition, and reduced negative social behaviour indicate that it could be an optimal supplement to organic diets.

11.
Nutrients ; 16(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794736

RESUMEN

INTRODUCTION: Chronic kidney disease is a degenerative and increasingly prevalent condition that includes metabolic abnormalities and is associated with a higher risk of sarcopenia. The conservative approach points primarily to controlling metabolic issues and reducing the risk of malnutrition and sarcopenia, slowing the progression of kidney disease. The present study aims to evaluate the effect of a low-protein diet on malnutrition and sarcopenia. METHODS: A total of 45 patients (33 male and 12 female) aged over 70 with chronic kidney disease stage 4-5 in conservative management were considered. All patients had a dietary assessment and prescription of personalized low-protein dietary plans (≤0.6 g protein/kg) and a follow-up control between 4 and 6 months. In preliminary and follow-up evaluations, anthropometric data, blood examinations, body composition results, muscle strength, physical performance, and a 3-day food diary were collected. RESULTS: In the follow-up period, a significant weight loss (p = 0.001) and a decrease in body mass index (p = 0.002) were recorded. Food diaries revealed a significant reduction in protein, sodium, potassium, and phosphorus intake (p < 0.001), with a significant reduction in urea (p < 0.001) and proteinuria (p = 0.01) without any impact on lean mass (p = 0.66). Considerable variations in adherence between food diaries and the prescribed diet were also noted. CONCLUSIONS: Providing a personalized low-protein diet led to significant benefits in a short period without worsening the patient's nutritional status.


Asunto(s)
Dieta con Restricción de Proteínas , Insuficiencia Renal Crónica , Sarcopenia , Humanos , Masculino , Femenino , Insuficiencia Renal Crónica/dietoterapia , Insuficiencia Renal Crónica/terapia , Anciano , Sarcopenia/dietoterapia , Dieta con Restricción de Proteínas/métodos , Anciano de 80 o más Años , Tratamiento Conservador/métodos , Índice de Masa Corporal , Composición Corporal , Estado Nutricional , Desnutrición/dietoterapia , Fuerza Muscular , Pérdida de Peso
12.
Anim Nutr ; 17: 144-154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766517

RESUMEN

Glutamine, one of the most abundant amino acids in the body, has been shown to exert various beneficial effects in pigs. However, knowledge regarding the role of dietary glutamine in low-protein diet-fed piglets remains scarce. The present study aimed to investigate the effects of different levels of L-glutamine on growth performance, serum biochemistry parameters, redox status, amino acids, and fecal microbiota in low-protein diet-fed piglets. A total of 128 healthy crossbred piglets (Landrace × Yorkshire) were randomly allocated into 4 groups of 4 replicate pens, with 8 piglets per pen. Piglets in the 4 groups were fed with corn and soybean meal-based low-protein diets (crude protein level, 17%) that contained 0%, 1%, 2%, and 3% L-glutamine, respectively, for 28 d. Pigs administered 1% L-glutamine had greater body weight on d 28 and average daily gain (ADG, P < 0.01), whereas a lower feed to gain ratio (F:G) from d 1 to 28 (P < 0.01), compared to the other three groups. Besides, lower body weight on d 14 and 28, ADG, average daily feed intake, and higher F:G from d 15 to 28 and d 1 to 28 were observed in response to 2% and 3% L-glutamine treatments than 0% and 1% L-glutamine treatments (P < 0.01). Moreover, 1% L-glutamine reduced serum glucose, malondialdehyde, hydrogen peroxide concentrations and inhibited aspartate aminotransferase, alanine aminotransferase, myeloperoxidase activities in low-protein diet-fed piglets on d 14, with concomitantly upregulated catalase, total superoxide dismutase activities and glutathione level (P < 0.05). However, dietary 3% L-glutamine enhanced blood urea nitrogen content in pigs on d 14 (P < 0.05). Further investigation revealed that 1% L-glutamine upregulated the serum glutamine, lysine, methionine, tyrosine, and reduced plasma valine content (P < 0.05). Additionally, 1% L-glutamine upregulated the abundance of p_75_a5, Clostridium, Lactobacillus, Prevotellaceae_Prevotella, and Gemmiger in the stool of piglets on d 14, with the Streptococcus level being concomitantly reduced (P < 0.05). Collectively, dietary 1% L-glutamine enhances the growth performance and improves serum physiochemical parameters and antioxidative capacity in low-protein diet-fed piglets at an early age, which are associated with an increased synthesis of glutathione by modulating amino acid levels, and the optimization of gut microbiota.

13.
J Poult Sci ; 61: 2024014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726100

RESUMEN

A low-protein (LP) diet may alleviate the environmental impact of chicken meat production by reducing nitrogen excretion and ammonia emissions. Thus, this study investigated the effect of a 15% reduced protein diet with or without amino acid (AA) supplementation on the growth performance of broiler chicks from 10 to 35 days of age and the underlying mechanism for loss of skeletal muscle mass. Thirty-six male broiler chicks were allocated to three experimental groups based on body weight: control, LP, and essential AA-supplemented LP (LP+AA). The body weight gain, feed conversion ratio, and weight of breast muscles and legs significantly decreased only in the LP group at the end of the feeding period. Plasma uric acid levels were significantly lower in the LP+AA group than those of the other groups. In the LP group, mRNA levels of microtubule-associated protein 1 light chain 3 isoform B were significantly higher in the pectoralis major, whereas those of atrogin-1, muscle RING-finger protein-1, and myoblast determination protein 1 were significantly higher in the biceps femoris compared to those in the control group. There were no significant differences in insulin-like growth factor 1 mRNA levels in the liver or skeletal muscle between groups. These findings suggested that supplementation with essential AAs ameliorated the impaired effects of an LP diet on growth performance in broiler chicks, and that the transcriptional changes in proteolytic genes in skeletal muscles might be related to the impaired effects of the LP diet.

14.
Front Vet Sci ; 11: 1373348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590541

RESUMEN

The reduction of crude protein (CP) content of broiler diets with balanced amino acid supply can increase the nitrogen (N) utilization efficiency and reduce ammonia emission, the risk of many health problems in birds. Feeding low protein (LP) diets without the impairment of performance traits needs the optimized dietary levels of threonine (Thr) and the non-essential amino acid (AA) glycine (Gly) and serine (Ser). However, the required concentrations and interactions of Thr and Gly + Ser, expressed as Gly equivalent (Glyequi), in LP diets are not fully understood. Therefore, the aim of this study was to investigate the effects of three LP (LP1-3) grower (11-24 days) and finisher (25-35 days) diets with 2% CP reduction compared to the control (C), differing in standardized ileal digestible (SID) Thr to lysine (Lys) ratio (C, LP1, LP3: 63%, LP2: 72%) and Glyequi levels (C: 15.65 g/kg, LP1: 13.74 g/kg, LP2: 13.70 g/kg, LP3: 15.77). The LP treatments did not impair the performance traits of broilers. The LP2 treatment with increased SID Thr-to-Lys ratio (+9.0%) resulted in significantly higher body weight gain and a more advantageous feed conversion ratio in the whole fattening compared to the control treatment with normal CP level (p < 0.05). The LP3 treatment containing swine meat meal with similar Glyequi levels compared to the normal CP treatment led to the most advantageous feed conversion ratio in the finisher phase and the highest nitrogen retention efficiency (p < 0.05). However, the LP3 treatment with a high starch-to-CP ratio negatively influenced the relative carcass weight and the ratio of abdominal fat of broilers (p < 0.05).

15.
Pak J Biol Sci ; 27(3): 113-118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38686732

RESUMEN

<b>Background and Objective:</b> Malnutrition and stunting are major unresolved problems in Indonesia. Protein deficiency can cause stunted growth, as well as make physical and cognitive abilities cannot reach their maximum potential. During childhood the need for protein must be fulfilled so that the peak of bone formation during adolescence can be perfect. In malnourished children, a low protein diet will lead to thinning of the bone cortex. Due to the high rate of stunting and malnutrition in children due to protein deficiency, a study was conducted on the effects of feeding low protein diet on rat bones. <b>Materials and Methods:</b> Male Wistar rats (n = 10) at 6-8 weeks old (body weight around 250 g), control groups were fed a normal chow diet and low protein diet groups were given low protein chow diet (protein 5%) for 18 weeks, then the rats were sacrificed and the femoral bones were isolated. Body weight, femur weight, femur length were checked and bone density was examined using X-ray. <b>Results:</b> The body proportions of the low protein group rats were smaller and thinner than those of the control group. This difference is supported by the significant weight loss starting from the sixth week after low protein feeding. There are significant differences in body weight and femur weight between the control and low protein diet groups. Bone density decreases significantly in low protein diet group. Macroscopically, the femur length of the low protein group was shorter than the control group, however the femur length did not show significant differences statistically between the two groups. <b>Conclusion:</b> A low protein diet decreased the body weight of the rats, also causing impaired bone growth characterized by decreasing femur weight. The low protein diet also caused osteoporosis in the bones.


Asunto(s)
Densidad Ósea , Dieta con Restricción de Proteínas , Fémur , Ratas Wistar , Animales , Masculino , Fémur/metabolismo , Ratas , Peso Corporal , Desarrollo Óseo , Huesos/metabolismo , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/metabolismo
16.
J Anim Sci Technol ; 66(1): 145-155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38618035

RESUMEN

This study was conducted to determine the effects of amino acid (AA) supplementation in low-protein (LP) diets on growth performance and nitrogen (N) excretion. A total of 175 7-day-old Ross 308 male broilers, with a mean body weight (BW) of 165 g (standard deviation = 11.2 g), were grouped into five blocks by BW and allocated to seven treatments according to a randomized complete block design with five replicate cages at five birds per cage. Dietary treatments comprised a control diet containing 20.0% crude protein (CP) and six LP diets containing either 18.5% or 17.0% CP. These LP diets were supplemented with either no AA supplementation, indispensable AA, or both indispensable and dispensable AA (glutamic acid and glycine). Birds were fed experimental grower diets from day 7 to 21 and then commercial finisher diets until day 28. During the grower period (day 7 to 21), birds fed LP diets supplemented with indispensable AA exhibited greater (p < 0.05) BW, body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F) than birds fed LP diets without crystalline AA and were comparable to birds fed the control diet. During the finisher period (day 21 to 28), birds fed LP diets supplemented with indispensable AA showed greater (p < 0.05) BW than birds fed LP diets without crystalline AA, and their growth performance was comparable to birds fed the control diet. Throughout the overall period, supplementing indispensable AA in LP diets resulted in elevated (p < 0.05) BWG, FI, and G:F more than those of LP diets without crystalline AA and were comparable to those of the control diet. Supplementing indispensable AA in LP diets decreased amount and coefficient of N excretion as much as the control diet. Dispensable AA supplementation in LP diets did not influence growth performance and N excretion. In conclusion, supplementing indispensable AA in LP diets maintains growth performance and N excretion until the dietary CP lowers from 20.0% to 17.0% during the grower period. As long as dietary CP is above 17.0%, dispensable AA may not be deficient in LP diets during the grower period.

17.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673954

RESUMEN

The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle ß1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.


Asunto(s)
Pollos , Dieta con Restricción de Proteínas , Metabolismo Energético , Respuesta al Choque Térmico , Animales , Pollos/metabolismo , Masculino , Termogénesis , Alimentación Animal , Ingestión de Alimentos
18.
J Genet Genomics ; 51(8): 824-835, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38657948

RESUMEN

Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.


Asunto(s)
Dieta con Restricción de Proteínas , Lactancia , Animales , Femenino , Lactancia/genética , Dieta con Restricción de Proteínas/efectos adversos , Ratones , Embarazo , Oocitos/metabolismo , Microbioma Gastrointestinal , Epigénesis Genética , Fenómenos Fisiologicos Nutricionales Maternos , Transcriptoma/genética , Masculino , Metilación de ADN , Efectos Tardíos de la Exposición Prenatal/genética
19.
J Nutr Biochem ; 128: 109618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462210

RESUMEN

A maternal low-protein diet during pregnancy can increase children's susceptibility to diabetes mellitus in adulthood. However, whether long noncoding RNAs (lncRNAs) in islets participate in the development of diabetes in adult offspring following maternal protein restriction is not fully understood. Female mice were fed a low-protein (LP) diet or control diet throughout gestation and lactation. The male offspring were then randomly divided into two groups according to maternal diet: offspring from control diet group dams (Ctrl group) and offspring from LP group dams (LP group). We observed the glucose metabolism of adult offspring. A lncRNA microarray was constructed for the islets from the LP group and Ctrl group to explore the differently expressed lncRNAs. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used to predict the functions of the differently expressed lncRNAs. The body weight from birth to 12 weeks of age was significantly lower in the LP offspring. Adult LP offspring exhibited impaired glucose tolerance and decreased insulin secretion, consistent with the reduction in ß-cell proliferation. According to the lncRNA microarray, four lncRNAs, three upregulated lncRNAs, and one downregulated lncRNA were differently expressed in LP offspring islets compared with Ctrl offspring. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed lncRNAs were mostly associated with the hypoxia-inducible factor-1α signaling pathway. Additionally, we validated the expression of these four differentially expressed lncRNAs via quantitative real-time polymerase chain reaction. Our findings demonstrated the expression patterns of lncRNAs in islets from adult offspring of mothers who consumed a maternal low-protein diet.


Asunto(s)
Dieta con Restricción de Proteínas , Islotes Pancreáticos , Fenómenos Fisiologicos Nutricionales Maternos , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Embarazo , Masculino , Islotes Pancreáticos/metabolismo , Efectos Tardíos de la Exposición Prenatal , Ratones , Ratones Endogámicos C57BL , Insulina/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo
20.
Nutrients ; 16(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38474760

RESUMEN

The prevalence of chronic kidney disease (CKD) is rising, especially in elderly individuals. The overlap between CKD and aging is associated with body composition modification, metabolic abnormalities, and malnutrition. Renal care guidelines suggest treating CKD patient with a low-protein diet according to the renal disease stage. On the other hand, geriatric care guidelines underline the need for a higher protein intake to prevent malnutrition. The challenge remains of how to reconcile a low dietary protein intake with insuring a favorable nutritional status in geriatric CKD populations. Therefore, this study aims to evaluate the effect of a low-protein adequate energy intake (LPAE) diet on nutritional risk and nutritional status among elderly CKD (stage 3-5) patients and then to assess its impact on CKD metabolic abnormalities. To this purpose, 42 subjects [age ≥ 65, CKD stage 3-5 in conservative therapy, and Geriatric Nutritional Risk Index (GNRI) ≥ 98] were recruited and the LPAE diet was prescribed. At baseline and after 6 months of the LPAE diet, the following data were collected: age, sex, biochemical parameters, anthropometric measurements, body composition, and the GNRI. According to their dietary compliance, the subjects were divided into groups: compliant and non-compliant. For the compliant group, the results obtained show no increased malnutrition risk incidence but, rather, an improvement in body composition and metabolic parameters, suggesting that the LPAE diet can provide a safe tool in geriatric CKD patients.


Asunto(s)
Desnutrición , Insuficiencia Renal Crónica , Humanos , Anciano , Estado Nutricional , Proteínas en la Dieta , Insuficiencia Renal Crónica/complicaciones , Desnutrición/complicaciones , Dieta con Restricción de Proteínas , Evaluación Nutricional , Evaluación Geriátrica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA