Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Genet Metab ; 143(1-2): 108556, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116528

RESUMEN

RATIONALE: Gaucher disease (GD), an autosomal recessive lysosomal storage disease, results from GBA1 variants causing glucocerebrosidase (GCase) deficiency. While enzyme replacement therapy (ERT) helps with systemic symptoms, neurological complications in GD2 and GD3 persist due to the blood-brain-barrier (BBB) limiting ERT efficacy. Ambroxol, a BBB-permeable chaperone, enhances GCase activity. Our review explores high-dose ambroxol's therapeutic potential, both preclinical and clinical, in GD2 and GD3. METHODS: PubMed was searched for studies published before March 2023, including clinical, animal, and in vitro studies focusing on the effect of high-dose ambroxol in GD2 and GD3. A narrative synthesis was performed. RESULTS: Nine in vitro, three animal, and eight clinical studies were included, demonstrating varied responses to ambroxol across diverse outcome measures. In vitro and animal studies demonstrated reduced endoplasmatic reticulum stress due to the relocation of GCase from the ER to the lysosomes. In vitro cell lines exhibited varying degrees of increased GCase activity. Clinical trials observed reduced lyso-GL1 levels in plasma (41-89%) and cerebrospinal fluid (CSF) (26-97%), alongside increased GCase activity in GD3 patients. Ambroxol exhibited varying effects on neurological outcomes and development. No severe adverse events were reported. CONCLUSION: High-dose ambroxol shows promise in managing neurological manifestations in GD3, albeit with uncertainties resulting from genetic heterogeneity and variable response. Further clinical trials, are essential for elucidating dosage-response relationships and refining treatment outcomes and strategies for neuronopathic GD.

3.
Clin Chim Acta ; 562: 119833, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955246

RESUMEN

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by the progressive accumulation of globotriaosylceramide (Gb3) leading to systemic manifestations such as chronic kidney disease, cardiomyopathy, and stroke. There is still a need for novel markers for improved FD screening and prognosis. Moreover, the pathological mechanisms in FD, which also include systemic inflammation and fibrosis, are not yet fully understood. METHODS: Plasma and platelets were obtained from 11 ERT (enzyme-replacement therapy)-treated symptomatic, 4 asymptomatic FD patients, and 13 healthy participants. A comprehensive targeted lipidomics analysis was conducted quantitating more than 550 lipid species. RESULTS: Sphingadiene (18:2;O2)-containing sphingolipid species, including Gb3 and galabiosylceramide (Ga2), were significantly increased in FD patients. Plasma levels of lyso-dihexosylceramides, sphingoid base 1-phosphates (S1P), and GM3 ganglioside were also altered in FD patients, as well as specific plasma ceramide ratios used in cardiovascular disease risk prediction. Gb3 did not increase in patients' platelets but displayed a high inter-individual variability in patients and healthy participants. Platelets accumulated, however, lyso-Gb3, acylcarnitines, C16:0-sphingolipids, and S1P. CONCLUSIONS: This study identified lipidome changes in plasma and platelets from FD patients, a possible involvement of platelets in FD, and potential new markers for screening and monitoring of this disease.

4.
Mol Ther Methods Clin Dev ; 32(2): 101272, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38946937

RESUMEN

Alpha-mannosidosis is caused by a genetic deficiency of lysosomal alpha-mannosidase, leading to the widespread presence of storage lesions in the brain and other tissues. Enzyme replacement therapy is available but is not approved for treating the CNS, since the enzyme does not penetrate the blood-brain barrier. However, intellectual disability is a major manifestation of the disease; thus, a complimentary treatment is needed. While enzyme replacement therapy into the brain is technically feasible, it requires ports and frequent administration over time that are difficult to manage medically. Infusion of adeno-associated viral vectors into the cerebrospinal fluid is an attractive route for broadly targeting brain cells. We demonstrate here the widespread post-symptomatic correction of the globally distributed storage lesions by infusion of a high dose of AAV1-feline alpha-mannosidase (fMANB) into the CSF via the cisterna magna in the gyrencephalic alpha-mannosidosis cat brain. Significant improvements in clinical parameters occurred, and widespread global correction was documented pre-mortem by non-invasive magnetic resonance imaging. Postmortem analysis demonstrated high levels of MANB activity and reversal of lysosomal storage lesions throughout the brain. Thus, CSF treatment by adeno-associated viral vector gene therapy appears to be a suitable complement to systemic enzyme replacement therapy to potentially treat the whole patient.

5.
Hum Gene Ther ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38970423

RESUMEN

Fabry disease (FD) is a multisystemic lysosomal storage disorder caused by the loss of α-galactosidase A (α-Gal) function. The current standard of care, enzyme replacement therapies, while effective in reducing kidney pathology when treated early, do not fully ameliorate cardiac issues, neuropathic manifestations, and risk of cerebrovascular events. Adeno-associated virus (AAV)-based gene therapies (AAV-GT) can provide superior efficacy across multiple tissues owing to continuous, endogenous production of the therapeutic enzyme and lower treatment burden. We set out to develop a robust AAV-GT to achieve optimal efficacy with the lowest feasible dose to minimize any safety risks that are associated with high-dose AAV-GTs. In this proof-of-concept study, we evaluated the effectiveness of an rAAV9 vector expressing human GLA transgene under a strong ubiquitous promoter, combined with woodchuck hepatitis virus posttranscriptional regulatory element (rAAV9-hGLA). We tested our GT at three different doses, 5e10 vg/kg, 2.5e11 vg/kg, and 6.25e12 vg/kg in the G3Stg/GLAko Fabry mouse model that has tissue Gb3 substrate levels comparable with patients with FD and develops several early FD pathologies. After intravenous injections of rAAV9-hGLA at 11 weeks of age, we observed dose-dependent increases in α-Gal activity in the key target tissues, reaching as high as 393-fold of WT in the kidneys and 6156-fold in the heart at the highest dose. Complete or near-complete substrate clearance was observed in animals treated with the two higher dose levels tested in all tissues except for the brain. We also found dose-dependent improvements in several pathological biomarkers, as well as prevention of structural and functional organ pathology. Taken together, these results indicate that an AAV-GT under a strong ubiquitous promoter has the potential to address the unmet therapeutic needs in patients with FD at relatively low doses.

6.
Int J Biochem Cell Biol ; 174: 106631, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038642

RESUMEN

Neuropathic lysosomal storage diseases (NLSDs), including ceroid lipofuscinosis neuronal 3 (CLN3) disease and Gaucher disease type 2 (GD2), are typically present in adolescents; however, there are no approved therapies. CLN3 disease is the most common of the 13 types of neuronal ceroid lipofuscinosis, and Gaucher disease is the most common type of lysosomal storage disease. These NLSDs share oxidative stress and lysosomal dysfunction with Parkinson's disease. In this study, we used patient-derived cells (PDCs) and resorcinol to develop a therapeutic agent based on peroxisome proliferator-activated receptor γ (PPARγ) activation. PPARγ is a major regulator of autophagy and reactive oxygen species (ROS). Resorcinol, a polyphenolic compound, has been reported to exhibit PPARγ agonistic potential. Protein levels were analyzed by immunoblotting and immunofluorescence microscopy. Changes in cellular metabolism, including ROS levels, lipid droplet content, and lysosomal activity, were measured by flow cytometry. Resorcinol reduced ROS levels by suppressing hypoxia-inducible factor 1α levels in CLN3-PDCs. Resorcinol upregulated autophagy and reduced lipid accumulation in CLN3-PDCs; however, these effects were abolished by autophagy inhibitors. Resorcinol increased nuclear PPARγ levels in CLN3-PDCs, and PPARγ antagonists abolished the therapeutic effects of resorcinol. Moreover, Resorcinol upregulated nuclear PPARγ levels and lysosomal activity in GD2-PDCs, and reduced lipid accumulation and ROS levels. In summary, resorcinol alleviated the shared pathogenesis of CLN3 disease and GD2 through PPARγ upregulation. These findings suggest that resorcinol is a potential therapeutic candidate for alleviating NLSD progression.

7.
Orphanet J Rare Dis ; 19(1): 269, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020431

RESUMEN

BACKGROUND: Mucopolysaccharidosis type IVa (Morquio A syndrome) and mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome) are rare inherited lysosomal storage diseases associated with significant functional impairment and a wide spectrum of debilitating clinical manifestations. These conditions are thought to have higher-than-average prevalence rates in Saudi Arabia due to high rates of consanguineous marriage in the country. There are several unmet needs associated with the management of these diseases in Saudi Arabia. MAIN BODY: The aim of this manuscript is to contextualize unmet management needs and provide recommendations to optimize diagnosis, multidisciplinary care delivery, and local data generation in this disease area. An expert panel was assembled comprising seven consultant geneticists from across Saudi Arabia. The Delphi methodology was used to obtain a consensus on statements relating to several aspects of mucopolysaccharidosis types IVa and VI. A consensus was reached for all statements by means of an online, anonymized voting system. The consensus statements pertain to screening and diagnosis, management approaches, including recommendations pertaining to enzyme replacement therapy, and local data generation. CONCLUSION: The consensus statements presented provide specific recommendations to improve diagnostic and treatment approaches, promote multidisciplinary care and data sharing, and optimize the overall management of these rare inherited diseases in Saudi Arabia.


Asunto(s)
Mucopolisacaridosis IV , Humanos , Arabia Saudita , Mucopolisacaridosis IV/terapia , Mucopolisacaridosis IV/diagnóstico , Mucopolisacaridosis IV/epidemiología , Consenso , Mucopolisacaridosis VI/terapia , Mucopolisacaridosis VI/diagnóstico , Terapia de Reemplazo Enzimático
8.
Anim Genet ; 55(4): 612-620, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866396

RESUMEN

Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders that occur in humans, dogs, and several other species. NCL is characterised clinically by progressive deterioration of cognitive and motor function, epileptic seizures, and visual impairment. Most forms present early in life and eventually lead to premature death. Typical pathological changes include neuronal accumulation of autofluorescent, periodic acid-Schiff- and Sudan black B-positive lipopigments, as well as marked loss of neurons in the central nervous system. Here, we describe a 19-month-old Schapendoes dog, where clinical signs were indicative of lysosomal storage disease, which was corroborated by pathological findings consistent with NCL. Whole genome sequencing of the affected dog and both parents, followed by variant calling and visual inspection of known NCL genes, identified a missense variant in CLN6 (c.386T>C). The variant is located in a highly conserved region of the gene and predicted to be harmful, which supports a causal relationship. The identification of this novel CLN6 variant enables pre-breeding DNA-testing to prevent future cases of NCL6 in the Schapendoes breed, and presents a potential natural model for NCL6 in humans.


Asunto(s)
Enfermedades de los Perros , Mutación Missense , Lipofuscinosis Ceroideas Neuronales , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Animales , Perros/genética , Enfermedades de los Perros/genética , Proteínas de la Membrana/genética , Masculino , Femenino
9.
Mol Genet Metab ; 142(3): 108512, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870773

RESUMEN

The late-onset GM2 gangliosidoses, comprising late-onset Tay-Sachs and Sandhoff diseases, are rare, slowly progressive, neurogenetic disorders primarily characterized by neurogenic weakness, ataxia, and dysarthria. The aim of this longitudinal study was to characterize the natural history of late-onset GM2 gangliosidoses using a number of clinical outcome assessments to measure different aspects of disease burden and progression over time, including neurological, functional, and quality of life, to inform the design of future clinical interventional trials. Patients attending the United States National Tay-Sachs & Allied Diseases Family Conference between 2015 and 2019 underwent annual clinical outcome assessments. Currently, there are no clinical outcome assessments validated to assess late-onset GM2 gangliosidoses; therefore, instruments used or designed for diseases with similar features, or to address various aspects of the clinical presentations, were used. Clinical outcome assessments included the Friedreich's Ataxia Rating Scale, the 9-Hole Peg Test, and the Assessment of Intelligibility of Dysarthric Speech. Twenty-three patients participated in at least one meeting visit (late-onset Tay-Sachs, n = 19; late-onset Sandhoff, n = 4). Patients had high disease burden at baseline, and scores for the different clinical outcome assessments were generally lower than would be expected for the general population. Longitudinal analyses showed slow, but statistically significant, neurological progression as evidenced by worsening scores on the 9-Hole Peg Test (2.68%/year, 95% CI: 0.13-5.29; p = 0.04) and the Friedreich's Ataxia Rating Scale neurological examination (1.31 points/year, 95% CI: 0.26-2.35; p = 0.02). Time since diagnosis to study entry correlated with worsening scores on the 9-Hole Peg Test (r = 0.728; p < 0.001), Friedreich's Ataxia Rating Scale neurological examination (r = 0.727; p < 0.001), and Assessment of Intelligibility of Dysarthric Speech intelligibility (r = -0.654; p = 0.001). In summary, patients with late-onset GM2 gangliosidoses had high disease burden and slow disease progression. Several clinical outcome assessments suitable for clinical trials showed only small changes and standardized effect sizes (change/standard deviation of change) over 4 years. These longitudinal natural history study results illustrate the challenge of identifying responsive endpoints for clinical trials in rare, slowly progressive, neurogenerative disorders where arguably the treatment goal is to halt or decrease the rate of decline rather than improve clinical status. Furthermore, powering such a study would require a large sample size and/or a long study duration, neither of which is an attractive option for an ultra-rare disease with no available treatment. These findings support the development of potentially more sensitive late-onset GM2 gangliosidoses-specific rating instruments and/or surrogate endpoints for use in future clinical trials.


Asunto(s)
Progresión de la Enfermedad , Gangliosidosis GM2 , Calidad de Vida , Humanos , Masculino , Femenino , Adulto , Estudios Longitudinales , Gangliosidosis GM2/terapia , Evaluación de Resultado en la Atención de Salud , Persona de Mediana Edad , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/diagnóstico , Enfermedad de Tay-Sachs/fisiopatología , Costo de Enfermedad , Edad de Inicio , Adulto Joven , Adolescente , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/diagnóstico , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/terapia , Enfermedad de Sandhoff/fisiopatología , Niño
10.
Orphanet J Rare Dis ; 19(1): 189, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715031

RESUMEN

BACKGROUND: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of ß-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII. METHODS: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N ≈ 50 planned) treated with vestronidase alfa or any other management approach. Data are monitored and recorded in compliance with Good Clinical Practice guidelines and planned interim analyses of captured data are performed annually. Here we summarize the safety and efficacy outcomes as of 17 November 2022. RESULTS: As of the data cutoff date, 35 patients were enrolled: 28 in the Treated Group and seven in the Untreated Group. Mean (SD) age at MPS VII diagnosis was 4.5 (4.0) years (range, 0.0 to 12.4 years), and mean (SD) age at DMP enrollment was 13.9 (11.1) years (range, 1.5 to 50.2 years). Ten patients (29%) had a history of nonimmune hydrops fetalis. In the 23 patients who initiated treatment prior to DMP enrollment, substantial changes in mean excretion from initial baseline to DMP enrollment were observed for the three urinary glycosaminoglycans (uGAGs): dermatan sulfate (DS), -84%; chondroitin sulfate (CS), -55%; heparan sulfate (HS), -42%. Also in this group, mean reduction from initial baseline to months 6, 12, and 24 were maintained for uGAG DS (-84%, -87%, -89%, respectively), CS (-70%, -71%, -76%, respectively), and HS (+ 3%, -32%, and - 41%, respectively). All adverse events (AEs) were consistent with the known vestronidase alfa safety profile. No patients discontinued vestronidase alfa. One patient died. CONCLUSIONS: To date, the DMP has collected invaluable MPS VII disease characteristic data. The benefit-risk profile of vestronidase alfa remains unchanged and favorable for its use in the treatment of pediatric and adult patients with MPS VII. Reductions in DS and CS uGAG demonstrate effectiveness of vestronidase alfa to Month 24. Enrollment is ongoing.


Asunto(s)
Terapia de Reemplazo Enzimático , Glucuronidasa , Mucopolisacaridosis VII , Proteínas Recombinantes , Humanos , Mucopolisacaridosis VII/tratamiento farmacológico , Glucuronidasa/uso terapéutico , Glucuronidasa/metabolismo , Masculino , Preescolar , Femenino , Niño , Terapia de Reemplazo Enzimático/métodos , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Lactante , Estudios Longitudinales , Adolescente
11.
Front Neurosci ; 18: 1392683, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737101

RESUMEN

GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, ß-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.

12.
Mol Genet Metab ; 142(3): 108497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763041

RESUMEN

Krabbe disease (KD) is a rare inherited demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase. Most patients with KD exhibit fatal cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before the age of 2-4 years. We have previously reported that primary OLs isolated from the brains of twitcher (twi) mice, an authentic mouse model of KD, have cell-autonomous developmental defects and undergo apoptotic death accompanied by abnormal accumulation of psychosine, an endogenous cytotoxic lyso-derivative of GalCer. In this study, we aimed to investigate the effects of the preclinical promyelinating drugs clemastine and Sob-AM2 on KD OL pathologies using primary OLs isolated from the brains of twi mice. Both agents specifically prevented the apoptotic death observed in twi OLs. However, while Sob-AM2 showed higher efficacy in restoring the impaired differentiation and maturation of twi OLs, clemastine more potently reduced the endogenous psychosine levels. These results present the first preclinical in vitro data, suggesting that clemastine and Sob-AM2 can act directly and distinctly on OLs in KD and ameliorate their cellular pathologies associated with myelin degeneration.


Asunto(s)
Apoptosis , Clemastina , Modelos Animales de Enfermedad , Leucodistrofia de Células Globoides , Oligodendroglía , Psicosina , Animales , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/tratamiento farmacológico , Oligodendroglía/patología , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Ratones , Clemastina/farmacología , Apoptosis/efectos de los fármacos , Psicosina/análogos & derivados , Psicosina/metabolismo , Diferenciación Celular/efectos de los fármacos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Células Cultivadas
13.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796704

RESUMEN

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Mucolipidosis , Neuraminidasa , Animales , Dependovirus/genética , Terapia Genética/métodos , Mucolipidosis/terapia , Mucolipidosis/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Humanos , Lisosomas/metabolismo , Ratones Noqueados , Transducción Genética , Expresión Génica
14.
Vet Res Commun ; 48(4): 1999-2005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38758424

RESUMEN

Lysosomal storage diseases are inherited or acquired disorders characterized by dysfunctional lysosomes that lead to intracytoplasmic accumulation of undegraded substrates, causing impaired cellular function and death. Many acquired lysosomal storage diseases are produced by toxic plants, which have indolizidine alkaloids, including swainsonine, that inhibits lysosomal α-mannosidase and Golgi α-mannosidase II. Swainsonine-induced nervous disease associated with various plants has been reported, including species of the genus Astragalus, Sida, Oxitropis, Swainsona, and Ipomoea. Two species of Astragalus (i.e. Astragalus garbancillo and Astragalus punae) have been found to cause neurologic disease in llamas. In addition, A. garbancillo was also associated with malformations in the offspring, and possibly abortions and neonatal mortality in llamas. The diagnosis of Astragalus spp. intoxication is established based on clinical signs, microscopic and ultrastructural findings, lectin histochemistry, abundance of these plants in the grazing area and determination of swainsonine in plant specimens.


Asunto(s)
Planta del Astrágalo , Swainsonina , Animales , Planta del Astrágalo/química , Enfermedades por Almacenamiento Lisosomal/veterinaria , Enfermedades por Almacenamiento Lisosomal/inducido químicamente , Intoxicación por Plantas/veterinaria , Femenino , Masculino
15.
Orphanet J Rare Dis ; 19(1): 181, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689282

RESUMEN

BACKGROUND: Fabry disease (FD) is a rare lysosomal storage disease associated with glycolipid accumulation that impacts multiple physiological systems. We conducted a systematic literature review (SLR) to characterize the humanistic (quality of life [QoL]) and economic burden of FD. METHODS: Searches were conducted in the Embase, MEDLINE®, and MEDLINE® In-Process databases from inception to January 19, 2022. Conference abstracts of specified congresses were manually searched. Additional searches were performed in the Cochrane and ProQuest databases for the humanistic SLR and the National Health Service Economic Evaluations Database for the economic SLR. Studies of patients with FD of any sex, race, and age, and published in the English language were included. There was no restriction on intervention or comparator. For the humanistic SLR, studies that reported utility data, database/registry-based studies, questionnaires/surveys, and cohort studies were included. For the economic SLR, studies reporting economic evaluations or assessing the cost of illness and resource use were included. RESULTS: Of the 1363 records identified in the humanistic search, 36 studies were included. The most commonly used QoL assessments were the 36-item Short-Form Health Survey (n = 16), EQ-5D questionnaire descriptive system or visual analog scale (n = 9), and the Brief Pain Inventory (n = 8). Reduced QoL was reported in patients with FD compared with healthy populations across multiple domains, including pain, physical functioning, and depressive symptoms. Multiple variables-including sex, age, disease severity, and treatment status-impacted QoL. Of the 711 records identified in the economic burden search, 18 studies were included. FD was associated with high cost and healthcare resource use. Contributors to the cost burden included enzyme replacement therapy, healthcare, and social care. In the seven studies that reported health utility values, lower utility scores were generally associated with more complications (including cardiac, renal, and cerebrovascular morbidities) and with classical disease in males. CONCLUSION: FD remains associated with a high cost and healthcare resource use burden, and reduced QoL compared with healthy populations. Integrating information from QoL and economic assessments may help to identify interventions that are likely to be of most value to patients with FD.


Asunto(s)
Costo de Enfermedad , Enfermedad de Fabry , Calidad de Vida , Enfermedad de Fabry/economía , Humanos , Masculino
16.
Int J Biol Sci ; 20(6): 2111-2129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617529

RESUMEN

Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme ß-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Glucosilceramidasa/genética , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , ARN Mensajero/genética , Vacunas contra la COVID-19 , Calidad de Vida
17.
Front Genet ; 15: 1377743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680422

RESUMEN

Background: Bibliometrics can trace general research trends in a particular field. Mucopolysaccharidoses (MPS), as a group of rare genetic diseases, seriously affect the quality of life of patients and their families. Scholars have devoted themselves to studying MPS's pathogenesis and treatment modalities and have published many papers. Therefore, we conducted a bibliometric and visual study of the top 100 most highly cited articles to provide researchers with an indication of the current state of research and potential directions in the field. Methods: The Web of Science Core Collection was searched for articles on MPS from 1 January 1900, to 8 November 2023, and the top 100 most cited articles were screened. The title, year of publication, institution, country, and first author of the articles were extracted and statistically analyzed using Microsoft Excel 2007. Keyword co-occurrence and collaborative networks were analyzed using VOSviewer 1.6.16. Results: A total of 9,273 articles were retrieved, and the top 100 most cited articles were filtered out. The articles were cited 18,790 times, with an annual average of 188 citations (122-507). Forty-two journals published these articles, with Molecular Genetics and Metabolism and Proceedings of the National Academy of Sciences of the United States being the most published journal (N = 8), followed by Pediatrics (N = 7), Blood (N = 6). The United States (N = 68), the UK (N = 25), and Germany (N = 20) were the top contributing countries. The Royal Manchester Children's Hospital (N = 20) and the University of North Carolina (N = 18) were the most contributing institutions. Muenzer J was the most prolific author (N = 14). Conclusion: We conducted a bibliometric and visual analysis of the top 100 cited articles in MPS. This study identifies the most influential articles currently available in the field of MPS, which provides a good basis for a better understanding of the disease and informs future research directions.

18.
Cell Rep ; 43(5): 114117, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38630590

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Gangliósido G(M1) , Gangliosidosis GM1 , Receptores de N-Metil-D-Aspartato , Animales , Humanos , Ratones , Calcio/metabolismo , Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Gangliósido G(M1)/metabolismo , Gangliosidosis GM1/metabolismo , Gangliosidosis GM1/patología , Plasticidad Neuronal , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Masculino , Femenino
19.
Diagnostics (Basel) ; 14(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38472963

RESUMEN

Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to ß-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in the brain and other organs. In total, two diseases have been linked to this gene mutation: Morquio type B and Gangliosidosis. The most frequent clinical manifestations include dysmorphic facial features, nervous and skeletal systems abnormalities, hepatosplenomegaly, and cardiomyopathies. The correct diagnosis of GM1 is a challenge due to the overlapping clinical manifestation between this disease and others, especially in infants. Therefore, in the current study we present the case of a 3-month-old male infant, admitted with signs and symptoms of respiratory distress alongside rapid progressive heart failure, with minimal neurologic and skeletal abnormalities, but with cardiovascular structural malformations. The atypical clinical presentation raised great difficulties for our diagnostic team. Unfortunately, the diagnostic of GM1 was made postmortem based on the DBS test and we were able to correlate the genotype with the unusual phenotypic findings.

20.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L713-L726, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469649

RESUMEN

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.


Asunto(s)
Resistencia de las Vías Respiratorias , Diafragma , Mucopolisacaridosis III , Alveolos Pulmonares , Animales , Diafragma/fisiopatología , Diafragma/patología , Diafragma/metabolismo , Rendimiento Pulmonar , Ratones , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Alveolos Pulmonares/metabolismo , Mucopolisacaridosis III/patología , Mucopolisacaridosis III/fisiopatología , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/genética , Contracción Muscular/fisiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Fuerza Muscular , Pulmón/patología , Pulmón/fisiopatología , Pulmón/metabolismo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA