Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.759
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Meas ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029494

RESUMEN

The measurement of electromyography (EMG) signals with needle electrodes is widely used in clinical settings for diagnosing neuromuscular diseases. Patients experience pain during needle EMG testing. It is significant to develop alternative diagnostic modalities. This paper proposes a portable magnetomyography (MMG) measurement system for neuromuscular disease auxiliary diagnosis. Firstly, the design and operating principle of the system are introduced. The feasibility of using the system for auxiliary diagnosis of neuromuscular diseases is then studied. The magnetic signals and needle EMG signals of thirty subjects were collected and compared. It is found that the amplitude of muscle magnetic field signal increases during mild muscle contraction, and the signal magnitudes of the patients are smaller than those of normal subjects. The diseased muscles tested in the experiment can be distinguished from the normal muscles based on the signal amplitude, using a threshold value of 6 pT. The MMG diagnosis results align well with the needle EMG diagnosis. In addition, the MMG measurement indicates that there is a persistence of spontaneous activity in the diseased muscle. The experimental results demonstrate that it is feasible to auxiliary diagnose neuromuscular diseases using the portable MMG system, which offers the advantages of non-contact and painless measurements. After more in-depth, systematic, and quantitative research, the portable MMG could potentially be used for auxiliary diagnosis of neuromuscular diseases.

2.
Curr Issues Mol Biol ; 46(7): 6390-6406, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057024

RESUMEN

Amidst the burgeoning interest in rotating magnetic fields (RMF) within biological research, there remains a notable gap in the scientific evidence concerning the long-term safety of RMF. Thus, this study aimed to investigate the safety of protracted exposure to a 0.2 T, 4 Hz RMF over 10 months in mice. Two-month-old female C57BL/6 mice were randomly allocated to either the RMF group (exposed to 0.2 T, 4 Hz real RMF) or the SHAM group (exposed to 0 T, 4 Hz sham RMF). Throughout the experiment, the murine weekly body weights were recorded, and their behavioral traits were assessed via open field tests. In the final month, a comprehensive evaluation of the murine overall health was conducted, encompassing analyses of blood parameters, histomorphological examination of major organs, and skeletal assessments using X-ray and micro-CT imaging. The murine immune system and lipid metabolism were evaluated through immunochip analysis and metabolomics. Notably, no discernible adverse effects with RMF exposure were observed. Murine body weight, locomotor behavior, organ histomorphology, and skeletal health remained unaffected by RMF. Blood analysis revealed subtle changes in hormone and lipid levels between the SHAM and RMF groups, yet these differences did not reach statistical significance. Moreover, RMF led to elevated serum interleukin-28 (IL-28) levels, albeit within the normal range, and modest alterations in serum lipid metabolites. Conclusively, mice exposed to the 0.2 T, 4 Hz RMF for 10 months displayed no significant signs of chronic toxicity, indicating its potential clinical application as a physical therapy.

3.
Metabolites ; 14(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057714

RESUMEN

Fermentation-a process of compound degradation by microorganisms-is a traditional food processing method utilized worldwide for the long-term preservation of fresh foods. In recent years, fermented foods have gained attention as health foods. Fermentation increases the nutritional value of ingredients, producing complex flavors and aromas. To identify unknown components in fermented foods, it is necessary to analyze compounds and conditions nondestructively and comprehensively. We performed intact-state nuclear magnetic resonance (NMR) spectroscopy using intermolecular single quantum coherence (iSQC) to detect the degradation of vegetables directly and nondestructively. We used two types of vegetables and a rice bran bed (nukazuke), which is used for traditional vegetable fermentation in Japan. Major metabolites such as saccharides, organic acids, and amino acids were identified in iSQC-sliced spectra. Comparing NMR signal intensities during degradation revealed the transition of metabolites characteristic of lactic acid fermentation. A pathway-based network analysis showed pathways involved in amino acid metabolism and lactic acid fermentation. Our analytical approach with intact-state NMR spectroscopy using iSQC demonstrated that it may be effective in other experimental systems, allowing for the evaluation of phenomena that have been conventionally overlooked in their true state.

4.
J Sep Sci ; 47(14): e2400166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034496

RESUMEN

To determine multiple microRNAs (miRNAs) from cells simultaneously is essential for understanding biological functions. Capillary electrophoresis (CE) can simultaneously determine multiple miRNAs by separation. Nevertheless, similar lengths and low concentrations in cells make miRNAs hard to separate and detect. In this study, CE with laser-induced fluorescence detection was combined with catalytic hairpin assembly (CHA) to determine three miRNAs, miR-21, miR-31, and miR-122. The amplification products of CHA, which were DNA duplexes, were designed to have different lengths for different miRNAs. This allowed for easy separation of the duplexes of different miRNAs by CE. The indirect determination of miRNAs was then achieved by separating and detecting these duplexes. A magnetic field was first applied on the capillary sieving electrophoresis to assist in the separation of the duplexes. Under the optimal conditions, the three duplexes could be completely separated within 2.5 min with the detection limits of miRNAs in the range 1.12-4.05 × 10-15 M. MiR-21 and miR-31 were successfully determined from Hela cells, while miR-122 was determined from chicken livers by this method. The recoveries ranged from 97.5% to 118%. The developed method was sensitive and reliable for miRNA determination.


Asunto(s)
Electroforesis Capilar , MicroARNs , MicroARNs/análisis , Humanos , Células HeLa , Animales , Catálisis , Campos Magnéticos , Pollos , Hígado/química , Límite de Detección
5.
Chem Biodivers ; : e202400984, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024491

RESUMEN

Leucojum aestivum L. is a bulbous Amaryllidaceae family plant. A pot experiment was conducted to investigate the impact of three different magnetic field (MF) intensities [50, 100 and 150 militesla (mT)] with three different exposure durations (1, 3 and 7 days) on growth parameters, alkaloid levels (galanthamine and lycorine), non-enzymatic antioxidant activities (total phenol-flavonoid content and free radical scavenging activity), and enzymatic antioxidant activities [superoxide dismutase (SOD) and catalase (CAT)] compared with control (no MF) in the bulbs and leaves. Maximum bulb length was achieved with 150 mT MF application for 3 days. Galanthamine levels increased by 63% in the bulbs with 150 mT-7 days exposure and by 79.8% in the leaves with 50 MT-1 day exposure compared to the control. The leaves and bulbs with 100 mT exposure showed the greatest increases in lycorine concentrations (23.8% and 62.3% rises, respectively). MF exposures of 150 mT for 3 days gave the best radical scavenging activity and total phenol-flavonoid content. The highest alkaloid levels in the bulbs were associated with higher SOD and CAT activity generated by MF treatments.  This study revealed that the medicinal value and quantity of L. aestivum bulbs could be significantly increased with 150 mT MF intensity.

6.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005474

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective: We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods: We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results: We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion: The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.

7.
J Magn Reson ; 365: 107709, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38991265

RESUMEN

Sensitivity is the foundation of every NMR experiment, and the signal-to-noise ratio (SNR) should increase with static (B0) magnetic field, by a proportionality that primarily depends on the design of the NMR probe and receiver. In the low B0 field limit, where the coil geometry is much smaller than the wavelength of the NMR frequency, SNR can increase in proportion to B0 to the power 7/4. For modern magic-angle spinning (MAS) probes, this approximation holds for rotor sizes up to 3.2 mm at 14.1 Tesla (T), corresponding to 600 MHz 1H and 151 MHz 13C Larmor frequencies. To obtain the anticipated benefit of larger coils and/or higher B0 fields requires a quantitative understanding of the contributions to SNR, utilizing standard samples and protocols that reproduce SNR measurements with high accuracy and precision. Here, we present such a systematic and comprehensive study of 13C SNR under MAS over the range of 14.1 to 21.1 T. We evaluate a range of probe designs utilizing 1.6, 2.5 and 3.2 mm rotors, including 24 different sets of measurements on 17 probe configurations using five spectrometers. We utilize N-acetyl valine as the primary standard and compare and contrast with other commonly used standard samples (adamantane, glycine, hexamethylbenzene, and 3-methylglutaric acid). These robust approaches and standard operating procedures provide an improved understanding of the contributions from probe efficiency, receiver noise figure, and B0 dependence in a range of custom-designed and commercially available probes. We find that the optimal raw SNR is obtained with balanced 3.2 mm design at 17.6 T, that the best mass-limited SNR is achieved with a balanced 1.6 mm design at 21.1 T, and that the raw SNR at 21.1 T reaches diminishing returns with rotors larger than 2.5 mm.

8.
Neuroscience ; 554: 128-136, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019392

RESUMEN

Aftereffects of non-invasive brain stimulation techniques may be brain state-dependent. Either continuous theta-burst stimulation (cTBS) as transcranial static magnetic field stimulation (tSMS) reduce cortical excitability. Our objective was to explore the aftereffects of tSMS on a M1 previously stimulated with cTBS. The interaction effect of two inhibitory protocols on cortical excitability was tested on healthy volunteers (n = 20), in two different sessions. A first application cTBS was followed by real-tSMS in one session, or sham-tSMS in the other session. When intracortical inhibition was tested with paired-pulse transcranial magnetic stimulation, LICI (ie., long intracortical inhibition) increased, although the unconditioned motor-evoked potential (MEP) remained stable. These effects were observed in the whole sample of participants regardless of the type of static magnetic field stimulation (real or sham) applied after cTBS. Subsequently, we defined a group of good-responders to cTBS (n = 9) on whom the unconditioned MEP amplitude reduced after cTBS and found that application of real-tSMS (subsequent to cTBS) increased the unconditioned MEP. This MEP increase was not found when sham-tSMS followed cTBS. The interaction of tSMS with cTBS seems not to take place at inhibitory cortical interneurons tested by LICI, since LICI was not differently affected after real and sham tSMS. Our results indicate the existence of a process of homeostatic plasticity when tSMS is applied after cTBS. This work suggests that tSMS aftereffects arise at the synaptic level and supports further investigation into tSMS as a useful tool to restore pathological conditions with altered cortical excitability.

9.
Sci Rep ; 14(1): 16456, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013987

RESUMEN

This manuscript addresses a significant research gap in the study by employing a mathematical model of photo thermoelastic wave propagation in a rotator semiconductor medium under the effect of a magnetic field and initial stress, as well as ramp-type heating. The considered model is formulated during the photothermal theory and in two-dimensional (2D) electronic-elastic deformation. The governing equations represent the interaction between the primary physical parameters throughout the process of photothermal transfer. Computational simulations are performed to determine the temperature, carrier density, displacement components, normal stress, and shear stress using the application of Lame's potential and normal mode analysis. Numerical calculations are carried out and graphically displayed for an isotropic semiconductor like silicon (Si) material. Furthermore, comparisons are made with the previous results obtained by the others, as well as in the presence and absence of magnetic field, rotation, and initial stress. The obtained results illustrate that the rotation, initial stress, magnetic field, and ramp-type heating parameter all have significant effects. This investigation provides valuable insights into the synergistic dynamics among a magnetization constituent, semiconducture structures, and wave propagation, enabling advancements in nuclear reactors' construction, operation, electrical circuits, and solar cells.

10.
Foods ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998495

RESUMEN

The present study demonstrates the effects of pH-shifting treatments and magnetic field-assisted pH-shifting treatments on the properties of myofibrillar protein (MP) in frozen meat. The solubility results indicate that the pH-shifting treatments increased the solubility of MP from 16.8% to a maximum of 21.0% (pH 9). The values of surface hydrophobicity and protein particle size distribution indicate that the pH-shifting treatment effectively inhibited protein aggregation through electrostatic interactions. However, under higher pH conditions (pH 10, 11), the treatments assisted by the magnetic field increased the degree of aggregation. The total thiol content and SDS-PAGE results further suggest that the magnetic field-assisted pH-shifting treatment accelerated the formation of covalent bonds among MPs under the alkaline environment. The results of the Differential Scanning Calorimetry (DSC) and protein secondary structure analysis indicate that the magnetic field promoted the unfolding of protein structures in an alkaline environment, markedly reducing the effective pH levels of pH-shifting. Electron paramagnetic resonance (EPR) data indicate that the phenomenon might be associated with the increased concentration of free radicals caused by the magnetic field treatment. In summary, the application of magnetic field-assisted pH-shifting treatments could emerge as a potent and promising strategy to improve the protein properties in frozen meat.

11.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999079

RESUMEN

Transition-metal-based oxygen evolution reaction (OER) catalysts have attracted widespread attention due to their inexpensive prices, unique layered structures, and rich active sites. Currently, designing low-cost, sustainable, and simple synthesis methods is essential for the application of transition-metal-based catalysts. Here, magnetic field (MF)-assisted chemical corrosion, as a novel technology, is adopted to construct superior OER electrocatalysts. The produced Ni(Fe)(OH)2-Fe2O3 electrode exhibits an overpotential of 272 mV at a current density of 100 mA cm-2, presenting a 64 mV reduction compared to the electrode without an MF. The experimental results indicate that an MF can induce the directional growth of Fe2O3 rods and reduce their accumulation. In addition, an external MF is beneficial for the lattice dislocation of the obtained catalysts, which can increase the surface free energy, thus reducing the activation energy and accelerating the electrochemical reaction kinetics. This work effectively combines a magnetic field with chemical corrosion and electrochemical energy, which offers a novel strategy for the large-scale development of environmentally friendly and superior electrocatalysts.

12.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999114

RESUMEN

Molecular beam epitaxy (MBE) is a powerful tool in modern technologies, including electronic, optoelectronic, spintronic, and sensoric applications. The primary factor determining epitaxial heterostructure properties is the growth mode and the resulting atomic structure and microstructure. In this paper, we present a novel method for growing epitaxial layers and nanostructures with specific and optimized structural and magnetic properties by assisting the MBE process using electromagnetic and mechanical external stimuli: an electric field (EF), a magnetic field (MF), and a strain field (SF). The transmission of the external fields to the sample is realized using a system of specialized sample holders, advanced transfers, and dedicated manipulators. Examples of applications include the influence of MFs on the growth and anisotropy of epitaxial magnetite and iron films, the use of EFs for in situ resistivity measurements, the realization of in situ magneto-optic measurements, and the application of SFs to the structural modification of metal films on mica.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39037872

RESUMEN

Sensitive magnetometer technology is desirable for biomagnetic field detection and geomagnetic field measuring. Signal amplification materials such as magneto-optical crystals or ceramics are crucial for enhancing detection sensitivity, but severe optical scattering and low Verdet constant further limit its application. To develop high-sensitivity magnetometers for quantum weak measurement schemes, we have conducted investigations on the powder calcining dynamics and prepared a series of high-optical-quality (Ho/Dy)2Zr2O7 transparent ceramic samples. The Verdet constant of magneto-optical materials was measured across a continuous wavelength spectrum, exhibiting a peak at 283 ± 5 rad/(T·m). We further established an electron transition mechanism to elucidate the exceptional magneto-optical attributes of dysprosium. In addition, samples demonstrated superior performance in weak-value amplification, reaching a low detectable magnetic field threshold of 3.5 × 10-8 T and continuously worked over 6 h with high stability. Our work developed a highly sensitive magnetometer using optimized magneto-optical ceramics and provided guidance on design, fabrication, and application for magneto-optical ceramics in quantum weak measurement.

14.
Water Res ; 262: 122107, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39038424

RESUMEN

To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem.

15.
J Colloid Interface Sci ; 676: 110-126, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018804

RESUMEN

Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.

16.
J Environ Manage ; 366: 121805, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018859

RESUMEN

Sulfurized nanoscale zero-valent iron supported on biochar (BC-SNZVI) has been successfully synthesized for 2,4,6-trichlorophenol (2,4,6-TCP) removal, while was only effectively under acidic conditions. To obtain highly efficient removal of 2,4,6-TCP within a broader pH range, weak static magnetic fields (WMF) was applied in BC-SNZVI/2,4,6-TCP aqueous systems. Results showed 30 mT WMF supported the most extensive 2,4,6-TCP removal, and 87.4% of 2,4,6-TCP (initial concentration of 30 mg/L) was removed by 0.5 g/L BC-SNZVI at neutral pH (pH = 6.8) within 180 min, which was increased by 54.4% compared to that without WMF. The observed rate constant (Kobs) under 30 mT WMF was 2.1-fold greater than that without WMF. Although three typical anions (NO3- (0.5-10.0 mM), H2PO4- (0.05-0.5 mM), and HCO3- (0.5-5.0 mM)) still inhibited 2,4,6-TCP removal, WMF could efficiently alleviate the inhibitory effects. Moreover, 73.1% of 2,4,6-TCP was successfully removed by BC-SNZVI under WMF in natural water. WMF remarkably boosted the dechlorination of 2,4,6-TCP, increasing the 2,4,6-TCP dechlorination efficiency from 45.2% (in the absence of WMF) to 83.8% (in the presence of WMF) by the end of 300 min. And the complete dechlorination product phenol appeared within 10 min. Force analysis confirmed the magnetic field gradient force (FB) moved paramagnetic Fe2+ at the SNZVI surface along the direction perpendicular to the external applied field, promoting the mass-transfer controlled SNZVI corrosion. Corrosion resistance analysis revealed WMF promoted the electron-transfer controlled SNZVI corrosion by decreasing its self-corrosion potential (Ecorr). With the introduction of sulfur, the magnitude of FB doubled and the Ecorr decreased comparing with NZVI. Our findings provide a facile and viable strategy for treating chlorinated phenols at neutral pH.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39020245

RESUMEN

Bacterial resilience within biofilms, rendering them up to 1000 times more resistant to antibiotic drugs, poses a formidable challenge. This study introduces a targeted biofilm eradication strategy, termed "target-penetration-killing-eradication", implemented through magnetic micro-robotic technology. Specifically, we present the development of a magnetic-guided nano-antibacterial platform designed for alternating magnetic field (AMF) controlled vancomycin release in the eradication of Staphylococcus aureus biofilms. To address the issue of premature vancomycin release in physiological conditions, we employed a temperature-sensitive linking agent, 4,4'-azobis(4-cyano valeric acid), facilitating the conjugation of vancomycin onto Fe3O4/CS nanocomposites, resulting in the novel construct Fe3O4@CS-ACVA-VH. The release mechanism adheres to first-order kinetics and Fickian diffusion, with each 10-min AMF treatment releasing approximately 8.4 ± 1.1% of vancomycin. The potency of vancomycin in the release solution was similar to that of the original drug (MIC: 7.4 ± 3.5 vs. 5.6 µg/mL). Fe3O4@CS-ACVA-VH exhibited sustained antibacterial efficacy, inhibiting bacterial growth for four consecutive days and preventing the formation of bacterial biofilms on its surface. Contact-inhibition bacterial activity of Fe3O4@CS-ACVA-VH against S. aureus was 0.046875 mg/mL. Conceptually validating our approach, we emphasize Fe3O4@CS-ACVA-VH's exceptional ability to penetrate S. aureus biofilms under static magnetic field attraction. Furthermore, the nano-platform offers the unique advantage of on-demand vancomycin release through alternating magnetic field stimulation, effectively clearing a larger biofilm area. This multifunctional nano-platform demonstrates magnetic-guided biofilm penetration followed by controlled vancomycin release, presenting a promising strategy for enhanced biofilm eradication.

18.
Zool Res ; 45(4): 924-936, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021081

RESUMEN

Amyloid beta (Aß) monomers aggregate to form fibrils and amyloid plaques, which are critical mechanisms in the pathogenesis of Alzheimer's disease (AD). Given the important role of Aß1-42 aggregation in plaque formation, leading to brain lesions and cognitive impairment, numerous studies have aimed to reduce Aß aggregation and slow AD progression. The diphenylalanine (FF) sequence is critical for amyloid aggregation, and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings. In this study, we examined the effects of a moderate-intensity rotating magnetic field (RMF) on Aß aggregation and AD pathogenesis. Results indicated that the RMF directly inhibited Aß amyloid fibril formation and reduced Aß-induced cytotoxicity in neural cells in vitro. Using the AD mouse model APP/PS1, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities. Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation, attenuated microglial activation, and reduced oxidative stress in the APP/PS1 mouse brain. These findings suggest that RMF holds considerable potential as a non-invasive, high-penetration physical approach for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Ratones , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Campos Magnéticos , Modelos Animales de Enfermedad , Placa Amiloide , Encéfalo/metabolismo
19.
Cell Biochem Biophys ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023678

RESUMEN

Magnetic Resonance Imaging (MRI) is an important diagnostic technique that uses powerful magnetic fields to generate detailed images of the human body. The aim of this study is to investigate to how static magnetic fields (SMF) affect the levels of trace elements and biochemical parameters in MRI staff' blood serum. This study examines the impacts of these exposures of 18 participants (9 males and 9 females) aged between 25 and 60.on the levels of trace elements in the blood serum and the biochemical parameters of the MRI staff at Azadi Teaching Hospital in Duhok and Zakho General Hospital-Bidari in Zakho City. Eighteen participants, consisting of nine males and nine females aged between 25 and 60, were selected from these hospitals. The researchers obtained blood samples and conducted analysis to determine the presence of trace elements (sodium, potassium, calcium, chloride) as well as numerous biochemical markers. The results showed that potassium and calcium levels increased with age, and older females had considerable deviations. Chloride levels exhibited a significant increase with age in both males and females. Glucose, creatinine, uric acid, and urea levels showed an increase with age, suggesting the possible damage to kidney function caused by continuous exposure to MRI. Increased levels of liver enzymes (GPT, GOT, ALP) and thyroid-stimulating hormone (TSH) were noticed, particularly in older females, indicating potential liver and thyroid dysfunction. These results highlight the importance of applying strict safety protocols and conducting regular health assessments for MRI personnel to minimize the possible hazards.

20.
Heliyon ; 10(12): e32813, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39005921

RESUMEN

Large-amplitude plasma wave is known to accelerate electrons to high energies. The electron energy gain mainly depends on plasma wave amplitude. In this paper, we investigate the excitation of large-amplitude plasma waves by laser beat-wave in an inhomogeneous plasma. The idea behind this work is to employ linear and radial plasma density profiles to enhance the plasma wave amplitude. PIC simulations are used to validate the numerical solution of the nonlinear wave equation in cylindrical dimensions through the finite difference method. Furthermore, the effects of the quadratic-radial plasma density profiles and magnetic field on the plasma wave excitation are investigated. The study shows that compared to the linear density profile of plasma, the plasma wave amplitude in the case of a linear-radial density profile is far more pronounced. For the linear-radial density profile, the plasma wave amplitude remains steady over greater distances of propagation compared to the linear density profile, resulting in reduced immediate damping effects. It can also be seen that the plasma wave amplitude is higher for the quadratic-radial than for the linear-radial density profiles. The effect of a longitudinal magnetic field on plasma wave amplitude is investigated. It can be seen that the plasma wave amplitude is increased by applying a magnetic field. This study may provide a way to enhance the plasma wave field for accelerating the electrons in laser-plasma accelerators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA