RESUMEN
Male-male competition is a component of Darwin's theory of precopulatory intrasexual selection, where males compete for access to resources important for reproduction and successful males pass on traits that endow greater competitive ability to their offspring, thereby exaggerating the trait(s) over evolutionary time. Metals, such as lead (Pb) often occur in urban mangrove forests, where shore crabs reside, and being neurotoxic may cause sub-lethal effects on behaviour. In this study, we asked whether exposure to Pb influences the outcomes of male-male competition in the Semaphore crab, Heloecius cordiformis, thereby altering outcomes of intrasexual selection. Crabs were exposed to an environmentally relevant, and a behaviourally relevant, concentration of lead (i.e. Pb, 10 µg/L and 100 µg/L respectively) under laboratory conditions for 96 h and subsequently allowed to compete for burrow ownership in experimental arenas. Exposed crabs (100 µg/L) were less successful than control crabs in chela size-matched paired competitive interactions, spent less time in burrows and predominantly lost burrow ownership. Further, exposure to Pb contamination (both 10 µg/L and 100 µg/L) negated the chela size advantage in size-asymmetric competitive interactions. This contaminant-induced loss of size-related competitive advantage may result in relaxation in selection pressure on body size and smaller male carapace widths and especially male chela lengths in contaminated locations. Assessment of a range of locations in the wild found a consistent pattern of metal-associated size declines in more contaminated locations for males, but not for females.
Asunto(s)
Braquiuros , Plomo , Masculino , Animales , Braquiuros/fisiología , Braquiuros/efectos de los fármacos , Conducta Competitiva/efectos de los fármacos , Selección Sexual , Conducta Sexual Animal/efectos de los fármacos , FemeninoRESUMEN
The existence of different male morphologies within a single species is associated with alternative mating tactics across different animal groups, offering textbook examples of evolutionary biology. The European stag beetle Lucanus cervus is a flagship species which has long fascinated naturalists for its charismatic appearance and behavior, with males possessing large mandibles used in ritualized ground fights for females. Males are polymorphic, with larger males possessing disproportionately larger mandibles and being better fighters, while smaller males require less food to develop and may have better chances to escape predation. We discovered an alternative mating tactic that opens a new interpretation on the evolution of the smaller males, based on aggregations of flying males competing to catch flying females in mid-air. Flight aggregations occur earlier in the season and in sites with sparser canopy cover as compared to ground fight aggregations, but most importantly, smaller males tend to prevail due to their greater agility in flight. Competition between males is crucial for reproductive success in this species, and alternative mating tactics involving flight were unknown in beetles, advocating for further research on the ecology and evolution of the iconic male polymorphism of stag beetles.
Asunto(s)
Escarabajos , Vuelo Animal , Conducta Sexual Animal , Animales , Escarabajos/fisiología , Escarabajos/genética , Masculino , Conducta Sexual Animal/fisiología , Femenino , Vuelo Animal/fisiología , Evolución Biológica , ReproducciónRESUMEN
Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations - mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency dependent selection, agonistic character displacement, and ecological selection, results from ~30% studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.
RESUMEN
According to sexual selection theory, the sexes are faced with opposing evolutionary goals. Male fitness benefits from access to females, whereas female fitness is constrained by food resources and safety for themselves and their offspring. Particularly in large solitary carnivores, such as polar bears (Ursus maritimus), these divergent goals can potentially lead to conflict between the sexes. Outside the mating season, when polar bears are on the move across vast distances, the consequences of such conflict can become apparent when individuals arrive at the same food source. To investigate interrelationships between the sexes, we observed successive polar bears visiting a bird breeding colony to feed on clutches of eggs. We found that males succeeded females more frequently and more closely than expected by chance. Moreover, when males were closer to conspecifics, they walked faster, spent less time in the colony and ingested less food. In contrast, female foraging performance was not associated with proximity to other bears. Irrespective of proximity, females generally spent short periods in the colony and ingested fewer clutches than males. Our results suggest that in polar bears, there is a trade-off between the benefits of food intake and the opportunities (in males) and risks (in females) posed by encountering conspecifics.
Asunto(s)
Estaciones del Año , Ursidae , Animales , Ursidae/fisiología , Femenino , Masculino , Conducta Sexual Animal/fisiología , Conducta Alimentaria/fisiología , Reproducción/fisiologíaRESUMEN
Sexual selection has resulted in some of the most elaborate traits seen in animals, many of which are used as weapons. These weapons can be incredibly diverse, even within species. Such morphological variation has largely been attributed to the environment in which individuals are reared and their genetics. However, variation in weapon form could also be the result of a weapon wearing out from usage. This mechanism has received relatively little attention. In this study, we demonstrate that sexually selected weapons can wear out from repeated use, providing experimental evidence that weapon usage can contribute to the diversity of weapon shapes observed within species. In a second experiment, we demonstrate that having a worn-out weapon decreases an individual's fighting ability. This finding illustrates that the shape of a weapon can have an important role in determining contest outcomes. Overall, these results suggest that individuals are limited in the number of times they can effectively use their weapons, which may be one factor (among others) influencing how frequently an animal engages in a fight.
Asunto(s)
Agresión , Animales , Femenino , Masculino , Selección Sexual , ArmasRESUMEN
For males of gregarious species, dominance status and the strength of affiliative relationships can have major fitness consequences. Social dynamics also impose costs by affecting glucocorticoids, mediators of homeostasis and indicators of the physiological response to challenges and within-group competition. We investigated the relationships between dominance, social bonds, seasonal challenges, and faecal glucocorticoid metabolite (fGC) measures in wild Assamese macaques (Macaca assamensis) at Phu Khieo Wildlife Sanctuary, Thailand, combining behavioural data with 4129 samples from 62 adult males over 15 years. Our previous work on this population suggested that increased competition during the mating season was associated with elevated fGC levels and that, unusually for male primates, lower rank position correlated with higher fGC levels. With a much larger dataset and dynamic measures of sociality, we re-examined these relationships and additionally tested the potentially fGC-attenuating effect of social support. Contrary to our previous study, yet consistent with the majority of work on male primates, dominance rank had a positive relationship with fGC levels, as high status correlated with elevated glucocorticoid measures. fGC levels were increased at the onset of the mating season. We demonstrated an fGC-reducing effect of supportive relationships in males and showed that dynamics in affiliation can correlate with dynamics in physiological responses. Our results suggest that in a system with intermediate contest potential, high dominance status can impose physiological costs on males that may potentially be moderated by social relationships. We highlight the need to consider the dynamics of sociality and competition that influence hormonal processes.
Asunto(s)
Heces , Glucocorticoides , Macaca , Conducta Social , Predominio Social , Animales , Masculino , Glucocorticoides/metabolismo , Glucocorticoides/análisis , Heces/química , Macaca/fisiología , Estaciones del Año , Animales Salvajes/fisiología , Tailandia , Conducta Animal/fisiologíaRESUMEN
Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.
Asunto(s)
Pinzones , Transcriptoma , Animales , Masculino , Pinzones/genética , Pinzones/fisiología , Testículo/metabolismo , Perfilación de la Expresión Génica , Conducta Sexual Animal , Colículos Superiores/metabolismo , Espermatozoides/metabolismo , Conducta SocialRESUMEN
Many species often show male-male combat for mating opportunities and resources within the species. Sexual selection through this radical combat leads to the evolution of males with exaggerated traits used as weapons, such as horns or mandibles, that often result in victory during combat. However, heterospecific interaction due to errors in species identification has often been observed, which results in decreased mating opportunities within the same species and fewer fertilized eggs. Males with exaggerated weapons may show dominance in resource acquisition over males without weapons and may decrease the reproductive success of the latter due to competition between the two. However, few studies have examined heterospecific interaction focusing on males with or without weapons. In this study, we investigated the effects of the male weapon on reproductive traits in heterospecific interaction in two species: the broad-horned flour beetle (Gnatocerus cornutus), in which males have exaggerated weapon traits; and the red flour beetle (Tribolium castaneum), in which males have no weapon traits. Both species are closely related and use the same food resources. G. cornutus males interfered with the resource acquisition and reproductive opportunities of T. castaneum by attacking T. castaneum. The reproductive success of T. castaneum decreased when they cohabited with G. cornutus males. These findings show that male weapon traits, which are important for sexual selection within the same species, can also greatly influence reproduction in other species.
RESUMEN
Male-male contests for access to females or breeding resources are critical in determining male reproductive success. Larger males and those with more effective weaponry are more likely to win fights. However, even after controlling for such predictors of fighting ability, studies have reported a winner-loser effect: previous winners are more likely to win subsequent contests, while losers often suffer repeated defeats. While the effect of winning-losing is well-documented for the outcome of future fights, its effect on other behaviors (e.g. mating) remains poorly investigated. Here, we test whether a winning versus losing experience influenced subsequent behaviors of male mosquitofish (Gambusia holbrooki) toward rivals and potential mates. We housed focal males with either a smaller or larger opponent for 24 h to manipulate their fighting experience to become winners or losers, respectively. The focal males then underwent tests that required them to enter and swim through a narrow corridor to reach females, bypassing a cylinder that contained either a larger rival male (competitive scenario), a juvenile or was empty (non-competitive scenarios). The tests were repeated after 1 wk. Winners were more likely to leave the start area and to reach the females, but only when a larger rival was presented, indicating higher levels of risk-taking behavior in aggressive interactions. This winner-loser effect persisted for at least 1 wk. We suggest that male mosquitofish adjust their assessment of their own and/or their rival's fighting ability following contests in ways whose detection by researchers depends on the social context.
RESUMEN
Higher male:female operational sex ratio (OSR) is often assumed to lead to stronger sexual selection on males. Yet, this premise has been directly tested by very few studies, with mixed outcomes. We investigated how OSR affects the strength of sexual selection against two deleterious alleles, a natural ebony mutant and a transgenic GFP insertion, in Drosophila melanogaster. To this end, we estimated the relative paternity share of homozygous mutant males competing against wild-type males under different OSRs (1:2, 1:1, 2:1). We also manipulated the mating pool density (18, 36, or 54 individuals) and assessed paternity over three consecutive days, during which the nature of sexual interaction changed. The strength of sexual selection against the ebony mutant increased with OSR, became weaker after the first day, and was little affected by density. In contrast, sexual selection against the GFP transgene was markedly affected by density: at the highest density, it increased with OSR, but at lower densities, it was strongest at 1:1 OSR, remaining strong throughout the experiment. Thus, while OSR can strongly affect the strength of sexual selection against "bad genes," it does not necessarily increase monotonically with male:female OSR. Furthermore, the pattern of relationship between OSR and the strength of sexual selection can be locus-specific, likely reflecting the specific phenotypic effects of the mutation.
RESUMEN
Emitting conspicuous signals into the environment to attract mates comes with the increased risk of interception by eavesdropping enemies. As a defence, a commonly described strategy is for signallers to group together in leks, diluting each individual's risk. Lekking systems are often highly social settings in which competing males dynamically alter their signalling behaviour to attract mates. Thus, signalling at the lek requires navigating fluctuations in risk, competition and reproductive opportunities. Here, we investigate how behavioural defence strategies directed at an eavesdropping enemy have cascading effects across the communication network. We investigated these behaviours in the túngara frog (Engystomops pustulosus), examining how a calling male's swatting defence directed at frog-biting midges indirectly affects the calling behaviour of his rival. We found that the rival responds to swat-induced water ripples by increasing his call rate and complexity. Then, performing phonotaxis experiments, we found that eavesdropping fringe-lipped bats (Trachops cirrhosus) do not exhibit a preference for a swatting male compared to his rival, but females strongly prefer the rival male. Defences to minimize attacks from eavesdroppers thus shift the mate competition landscape in favour of rival males. By modulating the attractiveness of signalling prey to female receivers, we posit that eavesdropping micropredators likely have an unappreciated impact on the ecology and evolution of sexual communication systems.
Asunto(s)
Quirópteros , Vocalización Animal , Animales , Masculino , Femenino , Conducta Predatoria , Anuros , Conducta Sexual Animal , ReproducciónRESUMEN
Environmental noise has a significant negative impact on acoustic communication in most situations, as it influences the production, transmission, and reception of acoustic signals. However, how animals respond to conspecific sounds when there is interference from environmental noise, and whether males and females display convergent behavioral responses in the face of noise masking remain poorly understood. In this study, we investigated the effects of conspecific male advertisement calls with different signal-to-noise ratios on male-male competition and female choice in the Anhui tree frog Rhacophorus zhoukaiyae using playback and phonotaxis experiments, respectively. The results showed that (1) female Anhui tree frogs preferentially selected the conspecific calls with higher SNR compared to calls with lower SNR; (2) males preferentially responded vocally to the conspecific calls with higher SNR compared to calls with lower SNR; and (3) males' competitive strategies were flexible in the face of noise interference. These results suggest that preferences of both sexes converge in outcome, and that male competitive strategies may depend on predictable female preferences. This study will provide an important basis for further research on decision-making in animals.
RESUMEN
What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.
Asunto(s)
Evolución Biológica , Escarabajos , Cuernos , Animales , Masculino , Fenómenos Biomecánicos/fisiología , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Cuernos/anatomía & histología , Cuernos/crecimiento & desarrollo , Cuernos/fisiología , Elevación , Caracteres Sexuales , JapónRESUMEN
BACKGROUND: Fighting disease while fighting rivals exposes males to constraints and trade-offs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfere with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony's worker force. RESULTS: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. CONCLUSIONS: Males of the ant C. obscurior have a well-developed immune system that raises a strong immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without compromising their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus reveals a novel social immunity mechanism how social insect workers protect the colony against disease risk.
Asunto(s)
Hormigas , Conducta Sexual Animal , Animales , Masculino , Conducta Sexual Animal/fisiología , Longevidad , Reproducción/fisiología , GravitaciónRESUMEN
Isotopic analysis of carbon and nitrogen in faeces is a reliable methodology for studying ecology in wildlife. Here, we tested this technique to detect variations in carbon and nitrogen isotopic ratios (δ13C and δ15N) in two different intrasexual competition scenarios of male Iberian red deer (Cervus elaphus hispanicus) using faeces of individuals collected during hunting actions in South-eastern Spain. The carbon isotopic ratio (δ13C) was not found to be significant, likely due to similar diet composition in all individuals. However, the nitrogen isotopic ratio (δ15N) was found to be lower in populations where sexual competition between males during the rut was higher compared to low-competition populations. Therefore, this study suggests a different use of proteins by an individual male red deer depending on the sexually competitive context in which he lives. Although further research is needed, these results show the potential of isotopic analysis as a tool for studying individual and populational variations in the level of intrasexual competition, with implications in evolutionary ecology and population management.
RESUMEN
The evolution of sexually selected traits is a major topic in evolutionary biology. However, large-scale evolutionary patterns in these traits remain understudied, especially those traits used in male-male competition (weapons sensu lato). Here, we analyze weapon evolution in chamaeleonid lizards, both within and between the sexes. Chameleons are an outstanding model system because of their morphological diversity (including 11 weapon types among ~220 species) and a large-scale time-calibrated phylogeny. We analyze these 11 traits among 165 species using phylogenetic methods, addressing many questions for the first time in any group. We find that all 11 weapons have each evolved multiple times and that weapon origins are generally more frequent than their losses. We find that almost all weapons have each persisted for >30 million years (and some for >65 million years). Across chameleon phylogeny, we identify both hotspots for weapon evolution (up to 10 types present per species) and coldspots (all weapons absent, many through loss). These hotspots are significantly associated with larger male body size, but are only weakly related to sexual-size dimorphism. We also find that weapon evolution is strongly correlated between males and females. Overall, these results provide a baseline for understanding large-scale patterns of weapon evolution within clades.
Asunto(s)
Modelos Biológicos , Caracteres Sexuales , Femenino , Masculino , Humanos , Filogenia , Fenotipo , Tamaño Corporal , Evolución BiológicaRESUMEN
Studies of socially mediated phenotypic plasticity have demonstrated adaptive male responses to the 'competitive' environment. Despite this, whether variation in the paternal social environment also influences offspring reproductive potential in an intergenerational context has not yet been examined. Here, we studied the descendants of wild-caught house mice, a destructive pest species worldwide, to address this knowledge gap. We analysed traits that define a 'competitive' phenotype in the sons of males (sires) that had been exposed to either a high-male density (competitive) or high-female density (non-competitive) environment. We report disparate reproductive strategies among the sires: high-male density led to a phenotype geared for competition, while high-female density led to a phenotype that would facilitate elevated mating frequency. Moreover, we found that the competitive responses of sires persisted in the subsequent generation, with the sons of males reared under competition having elevated sperm quality. As all sons were reared under common-garden conditions, variation in their reproductive phenotypes could only have arisen via nongenetic inheritance. We discuss our results in relation to the adaptive advantage of preparing sons for sperm competition and suggest that intergenerational plasticity is a previously unconsidered aspect in invasive mammal fertility control.
Asunto(s)
Semen , Espermatozoides , Animales , Ratones , Masculino , Femenino , Espermatozoides/fisiología , Reproducción , Adaptación Fisiológica , Mamíferos , Conducta Sexual AnimalRESUMEN
Male reproductive competition can select for condition-dependent, conspicuous traits that signal some aspect of fighting ability and facilitate assessment of potential rivals. However, the underlying mechanisms that link the signal to a male's current condition are difficult to investigate in wild populations, often requiring invasive experimental manipulation. Here, we use digital photographs and chest skin samples to investigate the mechanisms of a visual signal used in male competition in a wild primate, the red chest patch in geladas (Theropithecus gelada). We analysed photographs collected during natural (n = 144) and anaesthetized conditions (n = 38) to understand variability in male and female chest redness, and we used chest skin biopsies (n = 38) to explore sex differences in gene expression. Male and female geladas showed similar average redness, but males exhibited a wider within-individual range in redness under natural conditions. These sex differences were also reflected at the molecular level, with 10.5% of genes exhibiting significant sex differences in expression. Subadult males exhibited intermediate gene expression patterns between adult males and females, pointing to mechanisms underlying the development of the red chest patch. We found that genes more highly expressed in males were associated with blood vessel development and maintenance but not with androgen or oestrogen activity. Together, our results suggest male gelada redness variability is driven by increased blood vessel branching in the chest skin, providing a potential link between male chest redness and current condition as increased blood circulation to exposed skin could lead to heat loss in the cold, high-altitude environment of geladas.
Asunto(s)
Theropithecus , Animales , Masculino , Femenino , Caracteres Sexuales , Reproducción , Ambiente , PielRESUMEN
Success in sperm competition is an important determinant of male fitness in mating systems with female multiple mating. Thus, sperm competition risk represents a key dimension of the male social environment to which individual males are expected to adaptively adjust their reproductive phenotype. Such adaptive phenotypic adjustment we here refer to as male social niche conformance. In this pre-registered study, we investigated how male zebra finches, Taeniopygia guttata, adjust their behavior to sperm competition risk. We experimentally manipulated the opportunity for extra-pair mating to create two levels of sperm competition risk: 1) Single-pair, no sperm competition risk; 2) Double-pair, sperm competition risk. We compared male courtship, mate guarding, copulation rates, and aggression between the treatment groups. To identify hormonal correlates of male behavioral adjustment, we measured plasma testosterone and corticosterone levels before and after the social treatment started. Contrary to our pre-registered predictions, males from the Double-pair treatment group decreased courtship rates compared to those from the Single-pair group, and Double-pair males responded less aggressively towards intruders than Single-pair males. Testosterone levels decreased over the breeding cycle, but social treatment had no effect on either testosterone or corticosterone levels. Our results indicate that male zebra finches do not intensify courtship or competitive reproductive behaviors, or upregulate key hormones when another breeding pair is present. Although we found no evidence for the predicted adaptive behavioral responses to sperm competition risk, we show that male zebra finches plastically adjust their behavior to their social environment.