Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.487
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 25(1): 769, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354427

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS: To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS: The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1ß, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS: This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.


Asunto(s)
Antiinflamatorios , Condrocitos , Monoterpenos Ciclopentánicos , Células Madre Mesenquimatosas , Osteoartritis , Receptor PAR-2 , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/tratamiento farmacológico , Receptor PAR-2/metabolismo , Antiinflamatorios/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Células Cultivadas , Alimentos Funcionales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Lipopolisacáridos/farmacología , Aldehídos , Fenoles
2.
BMC Cardiovasc Disord ; 24(1): 531, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354361

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion injury (MI/RI) is an unavoidable risk event for acute myocardial infarction, with ferroptosis showing close involvement. We investigated the mechanism of MI/RI inducing myocardial injury by inhibiting the ferroptosis-related SLC7A11/glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and activating mitophagy. METHODS: A rat MI/RI model was established, with myocardial infarction area and injury assessed by TTC and H&E staining. Rat cardiomyocytes H9C2 were cultured in vitro, followed by hypoxia/reoxygenation (H/R) modeling and the ferroptosis inhibitor lipoxstatin-1 (Lip-1) treatment, or 3-Methyladenine or rapamycin treatment and overexpression plasmid (oe-SLC7A11) transfection during modeling. Cell viability and death were evaluated by CCK-8 and LDH assays. Mitochondrial morphology was observed by transmission electron microscopy. Mitochondrial membrane potential was detected by fluorescence dye JC-1. Levels of inflammatory factors, reactive oxygen species (ROS), Fe2+, malondialdehyde, lipid peroxidation, GPX4 enzyme activity, glutathione reductase, GSH and glutathione disulfide, and SLC7A11, GPX4, LC3II/I and p62 proteins were determined by ELISA kit, related indicator detection kits and Western blot. RESULTS: The ferroptosis-related SLC7A11/GSH/GPX4 pathway was repressed in MI/RI rat myocardial tissues, inducing myocardial injury. H/R affected GSH synthesis and inhibited GPX4 enzyme activity by down-regulating SLC7A11, thus promoting ferroptosis in cardiomyocytes, which was averted by Lip-1. SLC7A11 overexpression improved H/R-induced cardiomyocyte ferroptosis via the GSH/GPX4 pathway. H/R activated mitophagy in cardiomyocytes. Mitophagy inhibition reversed H/R-induced cellular ferroptosis. Mitophagy activation partially averted SLC7A11 overexpression-improved H/R-induced cardiomyocyte ferroptosis. H/R suppressed the ferroptosis-related SLC7A11/GSH/GPX4 pathway by inducing mitophagy, leading to cardiomyocyte injury. CONCLUSIONS: Increased ROS under H/R conditions triggered cardiomyocyte injury by inducing mitophagy to suppress the ferroptosis-related SLC7A11/GSH/GPX4 signaling pathway activation.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Modelos Animales de Enfermedad , Ferroptosis , Glutatión , Mitofagia , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ratas Sprague-Dawley , Transducción de Señal , Animales , Masculino , Ratas , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Línea Celular , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Mitofagia/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Redox Biol ; 77: 103378, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39368457

RESUMEN

Alternative oxidase (AOX) is an enzyme that transfers electrons from reduced quinone directly to oxygen without proton translocation. When AOX from Ciona intestinalis is xenotopically expressed in mice, it can substitute the combined electron-transferring activity of mitochondrial complexes III/IV. Here, we used brain mitochondria from AOX-expressing mice with such a chimeric respiratory chain to study respiratory control bioenergetic mechanisms. AOX expression did not compromise the function of the mammalian respiratory chain at physiological conditions, however the complex IV inhibitor cyanide only partially blocked respiration by AOX-containing mitochondria. The relative fraction of cyanide-insensitive respiration increased at lower temperatures, indicative of a temperature-controlled attenuation of mammalian respiratory enzyme activity. As AOX does not translocate protons, the mitochondrial transmembrane potential in AOX-containing mitochondria was more sensitive to cyanide during succinate oxidation than during malate/pyruvate-supported respiration. High concentrations of cyanide fully collapsed membrane potential during oxidation of either succinate or glycerol 3-phosphate, but not during malate/pyruvate-supported respiration. This confirms AOX's electroneutral redox activity and indicates differences in the proton-translocating capacity of dehydrogenases upstream of the ubiquinone pool. Our respiration data refutes previous proposals for quinone partitioning within the supercomplexes of the respiratory chain, instead supporting the concept of a single homogeneous, freely diffusing quinone pool. Respiration with either succinate or glycerol 3-phosphate promotes reverse electron transfer (RET) towards complex I. AOX expression significantly decreased RET-induced ROS generation, with the effect more pronounced at low temperatures. Inhibitor-sensitivity analysis showed that the AOX-induced decrease in H2O2 release is due to the lower contribution of complex I to net ROS production during RET. Overall, our findings provide new insights into the role of temperature as a mechanism to control respiration and highlight the utility of AOX as a genetic tool to characterize both the distinct pathways of oxygen reduction and the role of redox control in RET.

4.
Poult Sci ; 103(12): 104252, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39353326

RESUMEN

Aging in breeder roosters is often accompanied by a decline in semen quality, negatively impacting reproductive performance. This study aimed to investigate the effect of dietary alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid, on semen quality, antioxidant capacity, and sperm survival in aging breeder roosters. Roosters were divided into 4 groups and fed diets supplemented with 0%, 0.5%, 1%, and 2% ALA for 6 wk. Results indicated significant improvements in semen volume, sperm viability, and sperm density in ALA-supplemented groups compared to the control (P < 0.05). The 1% ALA group exhibited the most notable enhancements in sperm viability and density. Additionally, ALA supplementation increased the activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced malondialdehyde (MDA) levels, indicating enhanced antioxidant capacity (P < 0.05). Furthermore, ALA improved mitochondrial membrane potential (MMP) and reduced early and late sperm apoptosis, with the 2% ALA group showing the highest MMP and the lowest ROS-positive rate (P < 0.05). These findings suggest that dietary ALA supplementation enhances semen quality and antioxidant defenses, and mitigates oxidative stress, thus supporting the reproductive health of aging breeder roosters. This study underscores the potential of ALA as a dietary strategy to improve reproductive efficiency in poultry production.

5.
Biochim Biophys Acta Bioenerg ; 1866(1): 149516, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357779

RESUMEN

Recent patch-clamp studies of mitoplasts have challenged the traditional view that classical chemical uncoupling (by e.g. FCCP or DNP) is due to the protonophoric property of these substances themselves. These studies instead suggest that in brown-fat mitochondria, FCCP- and DNP-induced uncoupling is mediated through activation of UCP1 (and in other tissues by activation of the adenine nucleotide transporter). These studies thus advocate an entirely new paradigm for the interpretation of standard bioenergetic experiments. To examine whether these patch-clamp results obtained in brown-fat mitoplasts are directly transferable to classical isolated brown-fat mitochondria studies, we investigated the effects of FCCP and DNP in brown-fat mitochondria from wildtype and UCP1 KO mice, comparing the FCCP and DNP effects with those of a fatty acid (oleate), a bona fide activator of UCP1. Whereas the sensitivity of brown-fat mitochondria to oleate was much higher in UCP1-containing than in UCP1 KO mitochondria, there was no difference in sensitivity to FCCP and DNP between these mitochondria, neither in oxygen consumption rate nor in membrane potential studies. Correspondingly, the UCP1-dependent ability of GDP to competitively inhibit activation by oleate was not seen with FCCP and DNP. It would thus be premature to abandon the established bioenergetic interpretation of chemical uncoupler effects in classical isolated brown-fat mitochondria-and probably also generally in this type of mitochondrial study. Understanding the molecular and structural reasons for the different outcomes of mitoplast and mitochondrial studies is a challenging task.

6.
Curr Med Chem ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39400015

RESUMEN

BACKGROUND: Atherosclerosis is a complex cardiovascular disease often associated with mitochondrial dysfunction, which can lead to various cellular and metabolic abnormalities. Within the mitochondrial genome, specific mutations have been implicated in contributing to mitochondrial dysfunction. Atherosclerosis-associated m.15059G>A mutation has been of particular interest due to its potential role in altering mitochondrial function and cellular health. OBJECTIVE: This study aims to investigate the role of the atherosclerosis-associated m.15059G>A mutation in the development of mitochondrial dysfunction in monocyte-- like cells. METHODS: Monocyte-like cytoplasmic hybrid cell line TC-HSMAM1, which contains the m.15059G>A mutation in mtDNA, was used. The MitoCas9 vector was utilized to eliminate mtDNA copies carrying the m.15059G>A mutation from TC-HSMAM1 cybrids. Mitochondrial membrane potential, generation of reactive oxygen species, and lipid peroxidation levels were assessed using flow cytometry. Cellular reduced glutathione levels were assessed using the confocal microscopy. The oxygen consumption rate was measured using polarographic oxygen respirometry. RESULTS: The elimination of the m.15059G>A mutation resulted in a significant increase in mitochondrial membrane potential and improved mitochondrial efficiency while also causing a decrease in the generation of reactive oxygen species, lipid peroxidation, as well as cellular bioenergetic parameters, such as proton leak and non-mitochondrial oxygen consumption. At the same time, no changes were found in the intracellular antioxidant system after the mitochondrial genome editing. CONCLUSIONS: The presence of the m.15059G>A mutation contributes to mitochondrial dysfunction by reducing mitochondrial membrane potential, increasing the generation of reactive oxygen species and lipid peroxidation, and altering mitochondrial bioenergetics. Elimination of the mtDNA containing atherogenic mutation leads to an improvement in mitochondrial function.

7.
Drug Chem Toxicol ; : 1-11, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39411844

RESUMEN

Prangos uechtritzii Boiss & Hausskn stands out for its rich bioactive constituents including prantschimgin (PRA), imperatorin (IMP), suberosin (SUB), adicardin (ADI), and oxypeucedanin hydrate (OPH) in the Apiaceae family. Although these molecules contribute to several biological activities, their mitochondrial toxicity were not illuminated in depth with the appropriate in vitro and in silico models. Cell viability studies investigated the cytotoxic activities of molecules in HepG2 cells by replacing glucose with galactose due to Warburg effects. Mitochondrial toxicity (mitotoxicity) parameters such as cellular adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) levels were assessed with cytotoxic concentrations of selected molecules. Molecular docking and dynamics studies were also conducted against mitochondrial electron transport chain (ETC) complexes (I-V) with selected compounds. In vitro results showed that PRA, SUB, and IMP reduced cell viability more in galactose media compared to high glucose media in a dose-dependent manner. PRA, IMP, and SUB decreased ATP levels and MMP, especially in the galactose medium. The in silico study revealed that PRA, IMP, and SUB might bind to complexes I-V at different levels. The docking study demonstrated that PRA had the highest binding potential with the complexes, higher than the standard ligands in some cases. The molecular dynamics (MD) simulation study showed that PRA formed stable complexes with complexes II, III, and IV. In addition, PRA was anticipated to remain inside the binding site of complex II most stably during the 230 ns simulation period. Our study suggests that PRA, IMP, and SUB exhibit mitotoxicity.

8.
Sci Rep ; 14(1): 22391, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333742

RESUMEN

Age-related macular degeneration (AMD) is associated with the dysfunction and degeneration of retinal pigment epithelium (RPE) cells. Here, we examined how the formation and expansions of cell clusters are regulated by the differentiation of the RPE cells. In this study, ARPE-19 cells were cultivated in standard or differentiation media, i.e., without or with nicotinamide, to evaluate the spreading of cell clusters specified with differentiated cell phenotypes. Mitochondria membrane potential (MMP) and the distribution of the RPE cell clusters was also monitored with or without rotenone, a mitochondrial electron transport chain (ETC) complex I inhibitor. Cultured ARPE-19 cells generated scattered cell clusters composed mostly of smaller size cells expressing the differentiation markers mouse anti-cellular retinaldehyde-binding protein (CRALBP) and Bestrophin only in differentiation medium. After the increase of the number of clusters, the clusters appeared to paracellularly merge, resulting in expansion of the area occupied by the clusters. Of note, the cells within the clusters selectively had high MMP and were in accordance with the expression of RPE differentiation markers. Rotenone repressed the formation of the clusters and decreased intracellular MMP. The above results suggest that clustering of RPE cells with functional mitochondria plays a pivotal role in RPE cell differentiation process and the ETC complex I inhibition greatly influences the composition of RPE cells that are degenerated or differentiation disposed.


Asunto(s)
Diferenciación Celular , Potencial de la Membrana Mitocondrial , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Línea Celular , Mitocondrias/metabolismo , Rotenona/farmacología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Animales , Ratones , Agregación Celular/efectos de los fármacos
9.
Biology (Basel) ; 13(9)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39336177

RESUMEN

Regulating membrane potential is key to cellular function. For many animal cells, resting membrane potential is predominantly driven by a family of K2P (two-pore domain) potassium channels. These channels are commonly referred to as leak channels, as their presence results in the membrane being permeable to K+ ions. These channels, along with various pumps and exchangers, keep the cell resting membrane potential (Rp) relatively close to potassium's equilibrium potential (EK); however, in many cells, the resting membrane potential is more depolarized than the EK due to a small Na+ ion leak. Raising [Ca2+]O (extracellular Ca2+ concentration) can result in hyperpolarization of the membrane potential from the resting state. The mechanism for this hyperpolarization likely lies in the blockage of a Na+ leak channel (NALCN) and/or voltage-gated Na+ channels. The effects may also be connected to calcium-activated potassium channels. Using Drosophila melanogaster, we here illustrate that changing [Ca2+]O from 0.5 to 3 mM hyperpolarizes the muscle. Replacing NaCl with LiCl or choline chloride still led to hyperpolarization when increasing [Ca2+]O. Replacing CaCl2 with BaCl2 results in depolarization. K2P channel overexpression in the larval muscle greatly reduces the effects of [Ca2+]O on cell membrane potential, likely because potential is heavily driven by the EK in these muscles. These experiments provide an understanding of the mechanisms behind neuronal hypo-excitability during hypercalcemia, as well as the effects of altered expression of K2P channels on membrane potential.

10.
FASEB J ; 38(18): e70066, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39312414

RESUMEN

Mitochondrial form and function are regulated by the opposing forces of mitochondrial dynamics: fission and fusion. Mitochondrial dynamics are highly active and consequential during neuronal ischemia/reperfusion (I/R) injury. Mitochondrial fusion is executed at the mitochondrial inner membrane by Opa1. The balance of long (L-Opa1) and proteolytically cleaved short (S-Opa1) isoforms is critical for efficient fusion. Oma1 is the predominant stress-responsive protease for Opa1 processing. In neuronal cell models, we assessed Oma1 and Opa1 regulation during mitochondrial stress. In an immortalized mouse hippocampal neuron line (HT22), Oma1 was sensitive to mitochondrial membrane potential depolarization (rotenone, FCCP) and hyperpolarization (oligomycin). Further, oxidative stress was sufficient to increase Oma1 activity and necessary for depolarization-induced proteolysis. We generated Oma1 knockout (KO) HT22 cells that displayed normal mitochondrial morphology and fusion capabilities. FCCP-induced mitochondrial fragmentation was exacerbated in Oma1 KO cells. However, Oma1 KO cells were better equipped to perform restorative fusion after fragmentation, presumably due to preserved L-Opa1. We extended our investigations to a combinatorial stress of neuronal oxygen-glucose deprivation and reoxygenation (OGD/R), where we found that Opa1 processing and Oma1 activation were initiated during OGD in an ROS-dependent manner. These findings highlight a novel dependence of Oma1 on oxidative stress in response to depolarization. Further, we demonstrate contrasting fission/fusion roles for Oma1 in the acute response and recovery stages of mitochondrial stress. Collectively, our results add intersectionality and nuance to the previously proposed models of Oma1 activity.


Asunto(s)
GTP Fosfohidrolasas , Potencial de la Membrana Mitocondrial , Metaloendopeptidasas , Dinámicas Mitocondriales , Estrés Oxidativo , Animales , Dinámicas Mitocondriales/fisiología , Ratones , Potencial de la Membrana Mitocondrial/fisiología , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Línea Celular , Ratones Noqueados , Hipocampo/metabolismo , Metaloproteasas
11.
Ecotoxicol Environ Saf ; 285: 117083, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39317073

RESUMEN

Humans are ubiquitously exposed to crotonaldehyde (CRA) endogenously and exogenously. Deeper knowledge of the pharmacological and toxicological characteristics and the mechanisms of CRA on vasculature is urgently needed for prevention of its harmfulness. The effects of acute and prolonged exposure to CRA were studied in rat isolated arteries and arterial smooth muscle cells (ASMCs). Instant exposure to CRA (1-300 µM) concentration-dependently declined the tension of pre-constricted arteries with an irreversible depression on the contractility. Prolonged exposure of rat coronary arteries (RCAs) to CRA concentration- and time-dependently depressed the arterial contractile responsiveness to various vasoconstrictors including depolarization, U46619, serotonin and Bay K8644 (an agonist of voltage-gated Ca2+ channels (VGCCs)). In fresh RCA ASMCs, CRA abated depolarization-induced elevation of intracellular Ca2+ ([Ca2+]i). Electrophysiological study revealed that acute exposure to CRA depressed the functions of Ca2+-activated Cl- channels (CaCCs), voltage-gated K+ (Kv) channels and inward rectifier K+ (Kir) channels in RCA ASMCs. Prolonged exposure of RCAs to CRA reduced the expressions of these ion channels in RCA ASMCs, disordered tissue frames, injured arterial cells, and increased autophagosomes in both ASMCs and endothelial cells. In rat aortic smooth muscle cells (A7r5), CRA exposure decreased the cell viability, elevated the intracellular levels of reactive oxygen species, reduced the mitochondrial membrane potential, and enhanced autophagy. Taken together, the present study for the first time portrays a clearer panoramic outline of the vascular effects and the mechanisms of CRA on arteries, demonstrates that CRA impairs arterial contractility, depresses VGCCs, CaCCs, Kv channels and Kir channels, reduces cell viability, and destroys the arterial histiocytes, and suggests that excessive oxidative stress, mitochondrial dysfunction and autophagy underlie these vascular damages. These findings are significant for the comprehensive evaluation of the vicious effects of CRA on arteries and suggest potential preventive strategies.


Asunto(s)
Aldehídos , Autofagia , Mitocondrias , Miocitos del Músculo Liso , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Autofagia/efectos de los fármacos , Ratas , Mitocondrias/efectos de los fármacos , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Aldehídos/toxicidad , Músculo Liso Vascular/efectos de los fármacos , Ratas Sprague-Dawley , Calcio/metabolismo , Arterias/efectos de los fármacos
12.
Biomed Pharmacother ; 179: 117365, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217837

RESUMEN

Mangosteen (Garcinia mangostana) is well-known for its nutritional value and health benefits. Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. Here we show that the prenylated xanthones, α-mangostin, γ-mangostin, 9-hydroxycalabaxanthone (9-HCX), and garcinone E from the mangosteen pericarp exhibit cytotoxicity against a panel of human cancer cell lines including lung adenocarcinoma (A549), cervical carcinoma (HeLa), prostatic carcinoma (DU 145), pancreatic carcinoma (MIA PaCa-2), hepatocellular carcinoma (Hep G2), bladder urothelial cancer (5637), as well as the triple-negative breast cancer cells MDA-MB-231. In line with its higher predicted bioactivity score compared to other prenylated xanthones, 9-HCX induced the strongest antiproliferative and proapoptotic effects in MDA-MB-231 breast cancer xenografts in vivo. In different in vitro models, we demonstrate that prenylated xanthones from G. mangostana target mitochondria in cancer cells by inhibition of the mitochondrial respiratory chain complex II (α-mangostin, γ-mangostin, and garcinone E) and complex III (9-HCX) as shown in isolated mitochondria. Accordingly, oxidative mitochondrial respiration (OXPHOS) was inhibited, mitochondrial proton leak increased, and adenosine triphosphate (ATP) synthesis decreased as analyzed by Seahorse assay in MDA-MB-231 cells. Hence, the prenylated xanthones increased mitochondrial superoxide levels, induced mitochondrial membrane permeabilization, and initiated caspase 3/7-mediated apoptosis in MDA-MB-231 triple-negative breast cancer cells. Thus, prenylated xanthones from Garcinia mangostana exhibit anticancer activity based on interference with the mitochondrial respiration.


Asunto(s)
Garcinia mangostana , Mitocondrias , Xantonas , Xantonas/farmacología , Xantonas/aislamiento & purificación , Humanos , Garcinia mangostana/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Animales , Prenilación , Femenino , Ratones , Apoptosis/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
13.
Chemosphere ; 364: 143220, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233293

RESUMEN

The demand for developing bioindicators to assess environmental pollution has increased significantly due to the awareness of potential threats of diseases. Herein, the eukaryotic ubiquitous microorganism Acanthamoeba sp. was used as a bioindicator to explore further the influence of functionalized organic molecules containing -CC- and -CHN- moieties prior application in the potential electronic components. The acetylide and hybrid acetylide-imine derivatives (FYD3A, FYD4B, and FYD4C) were tested for their cytotoxicity potentials based on dose-response analysis, morphological observation, and mode of cell death assessment on Acanthamoeba sp. (environmental-isolate). The biological activities of optimized compounds were evaluated by HOMO-LUMO energy gap and MEP analysis. The determination of the IC50 value through the MTT assay showed functionalized organic molecules of FYD3A, FYD4B, and FYD4C, revealing the inhibition growth of Acanthamoeba sp. with IC50 values in the 3.515-3.845 µg/mL range. Morphological observation displayed encystment with cellular agglutination and overall cell shrinkage. AO/PI-stained moieties-treated Acanthamoeba sp. cells appeared with shades of red to orange in necrotic Acanthamoeba cells whilst green to yellow apoptotic Acanthamoeba cells when compared to entirely green fluorescence untreated cells. Moreover, the results of the mitochondrial membrane potential (MMP) assay demonstrate the integrity and functionality potential of the mitochondrial membrane in cells, where a decrease in the MMP assay is linked to apoptosis. This study confirmed that the functionalized organic molecule featuring acetylide and its designated acetylide-imine moieties exhibit cytotoxicity towards the Acanthamoeba sp. by apoptotic and necrotic mode of cell death. This indicates that seeping these derivatives as electronic components can lead to the leaching of hazardous chemicals and contribute to environmental pollution that negatively affects the ecosystem. This study proposes the selection of efficient systems and elements for functionalized organic molecules that are safe to be released into the environment.


Asunto(s)
Acanthamoeba , Iminas , Acanthamoeba/efectos de los fármacos , Iminas/toxicidad , Apoptosis/efectos de los fármacos , Monitoreo del Ambiente/métodos
14.
Food Chem Toxicol ; 193: 115009, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39304082

RESUMEN

Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.

15.
Vision Res ; 224: 108487, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39303640

RESUMEN

A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.


Asunto(s)
Potenciales de la Membrana , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/fisiología , Humanos , Potenciales de la Membrana/fisiología , Cationes/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/fisiología , Presión Intraocular/fisiología , Sodio/metabolismo
16.
Microbiol Res ; 289: 127918, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39342747

RESUMEN

Ketoconazole is a classical antifungal drug commonly used in the clinic. With the increased use of ketoconazole in recent years, an increasing number of drug-resistant strains have emerged during clinical treatment. It is well known that fungi acquire drug resistance in multiple ways, while the molecular mechanisms underlying ketoconazole resistance remain for comprehensive exploration. In this study, we found that the expression of the small plasma membrane protein-encoding gene PMP3 was significantly down-regulated in several clinically isolated ketoconazole-resistant strains, indicating the relationship between PMP3 expression and ketoconazole resistance. By knocking out the PMP3, we found that the absence of the Pmp3 resulted in a significant increase in resistance of Candida albicans to ketoconazole, which was also confirmed in a systemic infection model in mice. We further demonstrated that various physiological properties, such as cell membrane fluidity, plasma membrane potential, permeability and ergosterol distribution were altered in the pmp3Δ/Δ mutant, which is associated with the enhanced cellular resistance to ketoconazole. In addition, overexpression rather than deletion of PMP3 alters the hyphal development and biofilm formation capacity in C. albicans. This study reveals the contribution of Pmp3 to alteration of drug resistance in fungal pathogens, which may guide the development of novel antifungal strategies.

17.
Biochem Biophys Res Commun ; 734: 150610, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217810

RESUMEN

Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.

18.
aBIOTECH ; 5(3): 362-367, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279852

RESUMEN

Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.

19.
Cell ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260373

RESUMEN

Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.

20.
Mol Biol Rep ; 51(1): 997, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297923

RESUMEN

BACKGROUND: Thiazole derivatives are gaining prominence in cancer research due to their potent anti-cancer effects and multifaceted biological activities. In leukemia research, these compounds are particularly studied for their ability to induce apoptosis, disrupt mitochondrial membrane potential (MMP), and modulate cell signaling pathways. METHODS AND RESULTS: This study investigates the efficacy of 4-Methylthiazole in inducing apoptosis in HL-60 leukemia cells. Apoptosis was quantified via flow cytometry using FITC Annexin V and propidium iodide staining. Mitochondrial disruption was evaluated through alterations in mitochondrial membrane potential (MMP) as measured by the JC-1 assay. The compound significantly disrupted MMP, activated Caspase-3, and induced the release of Cytochrome C, all of which are critical markers of apoptosis (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). Additionally, treatment with 4-Methylthiazole markedly reduced CD45 and CD123 surface markers, indicating significant phenotypic alterations in leukemia cells (****p < 0.0001). High-dose treatment with 4-Methylthiazole significantly increased ROS levels, suggesting elevated oxidative stress and the presence of intracellular free radicals, contributing to its cytotoxic effects (*p < 0.05). A significant rise in TNF-α levels was observed post-treatment, indicating a pro-inflammatory response that may further inhibit leukemia cell viability. While IL-6 levels remained unchanged, a dose-dependent decrease in IL-10 levels was noted, suggesting a reduction in immunosuppressive conditions within the tumor microenvironment (*p < 0.05). CONCLUSIONS: Overall, 4-Methylthiazole targets leukemia cells through multiple apoptotic mechanisms and modifies the immune landscape of the tumor microenvironment, enhancing its therapeutic potential. This study highlights the need for further clinical investigation to fully exploit the potential of thiazole derivatives in leukemia treatment.


Asunto(s)
Apoptosis , Potencial de la Membrana Mitocondrial , Mitocondrias , Tiazoles , Humanos , Apoptosis/efectos de los fármacos , Células HL-60 , Tiazoles/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacología , Citocromos c/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Leucemia/patología , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA