Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Biosci (Landmark Ed) ; 27(11): 317, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36472108

RESUMEN

The title usage of Unde venisti 'from where have you come' is from a now dead language (Latin) that foundationally influenced modern English (not the major influence, but an essential formative one). This is an apt analogy for how both the ancient eukaryotic and eumetazoan functions of PGRMC proteins (PGRMC1 and PGRMC2 in mammals) probably influence modern human biology: via a formative trajectory from an evolutionarily foundational fulcrum. There is an arguable probability, although not a certainty, that PGRMC-like proteins were involved in eukaryogenesis. If so, then the proto-eukaryotic ancestral protein is modelled as having initiated the oxygen-induced and CYP450 (Cytochrome P450)-mediated synthesis of sterols in the endoplasmic reticulum to regulate proto-mitochondrial activity and heme homeostasis, as well as having enabled sterol transport between endoplasmic reticulum (ER) and mitochondria membranes involving the actin cytoskeleton, transport of heme from mitochondria, and possibly the regulation/origins of mitosis/meiosis. Later, during animal evolution, the last eumetazoan common ancestor (LEUMCA) acquired PGRMC phosphorylated tyrosines coincidentally with the gastrulation organizer, Netrin/deleted in colorectal carcinoma (DCC) signaling, muscle fibers, synapsed neurons, and neural recovery via a sleep-like process. Modern PGRMC proteins regulate multiple functions, including CYP450-mediated steroidogenesis, membrane trafficking, heme homeostasis, glycolysis/Warburg effect, fatty acid metabolism, mitochondrial regulation, and genomic CpG epigenetic regulation of gene expression. The latter imposes the system of differentiation status-sensitive cell-type specific proteomic complements in multi-tissued descendants of the LEUMCA. This paper attempts to trace PGRMC functions through time, proposing that key functions were involved in early eukaryotes, and were later added upon in the LEUMCA. An accompanying paper considers the implications of this awareness for human health and disease.


Asunto(s)
Eucariontes , Proteómica , Animales , Humanos , Epigénesis Genética , Receptores de Progesterona/metabolismo , Glucólisis , Hemo/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Front Biosci (Landmark Ed) ; 27(11): 318, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36472116

RESUMEN

The title usage of Latin Quo vadis 'where are you going' extends the question Unde venisti from where 'did you come?' posed in the accompanying paper and extends consideration of how ancient eukaryotic and eumetazoan functions of progesterone receptor membrane component (PGRMC) proteins (PGRMC1 and PGRMC2 in mammals) could influence modern human health and disease. This paper attempts to extrapolate to modern biology in terms of extensions of hypothetical ancestral functional states from early eukaryotes and the last eumetazoan common ancestor (LEUMCA), to relativize human metabolic physiology and disease. As novel cell types and functional specializations appeared in bilaterian animals, PGRMC functions are hypothesized to have continued to be part of the toolkit used to develop new cell types and manage increasingly complex tasks such as nerve-gut-microbiome neuronal and hormonal communication. A critical role of PGRMC (as one component of a new eumetazoan genetic machinery) is proposed in LEUMCA endocrinology, neurogenesis, and nerve-gut communication with possible involvement in circadian nicotinamide adenine dinucleotide synthesis. This model would explain the contribution of PGRMC to metabolic and differentiation/behavioral changes observed in age-related diseases like diabetes, cancer and perhaps aging itself. Consistent with proposed key regulation of neurogenesis in the LEUMCA, it is argued that Alzheimer's disease is the modern pathology that most closely reflects the suite of functions related to PGRMC biology, with the 'usual suspect' pathologies possibly being downstream of PGRMC1. Hopefully, these thoughts help to signpost directions for future research.


Asunto(s)
Eucariontes , Receptores de Progesterona , Animales , Humanos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Biología , Mamíferos/metabolismo , Proteínas de la Membrana/genética
3.
FEBS Lett ; 596(18): 2409-2417, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35993565

RESUMEN

We recently reported that the membrane-associated progesterone receptor (MAPR) protein family (mammalian members: PGRMC1, PGRMC2, NEUFC and NENF) originated from a new class of prokaryotic cytochrome b5 (cytb5 ) domain proteins, called cytb5M (MAPR-like). Relative to classical cytb5 proteins, MAPR and ctyb5M proteins shared unique sequence elements and a distinct heme-binding orientation at an approximately 90° rotation relative to classical cytb5 , as demonstrated in the archetypal crystal structure of a cytb5M protein (PDB accession number 6NZX). Here, we present the crystal structure of an archaeal cytb5M domain (Methanococcoides burtonii WP_011499504.1, PDB:6VZ6). It exhibits similar heme binding to the 6NZX cytb5M , supporting the deduction that MAPR-like heme orientation was inherited from the prokaryotic ancestor of the original eukaryotic MAPR gene.


Asunto(s)
Citocromos b , Receptores de Progesterona , Animales , Archaea/genética , Archaea/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Citocromos b5/genética , Hemo/metabolismo , Mamíferos , Unión Proteica , Receptores de Progesterona/genética
4.
Biol Chem ; 401(9): 1093-1099, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32924377

RESUMEN

Treatment of different cell lines with progesterone receptor membrane component 1 (PGRMC1) antagonist AG-205 rapidly induces the formation of large vesicular structures that likely represent endosomes. Crispr/Cas9 was used to target the PGRMC1 and progesterone receptor membrane component 2 (PGRMC2) genes in CHO-K1 and HeLa. Unexpectedly, deficiency in one of these or both genes did not inhibit the formation of enlarged vesicles by AG-205, demonstrating additional molecular target(s) of this compound besides PGRMC1. Thus, AG-205 cannot be regarded as a PGRMC1-specific antagonist. However, provided that its currently unknown target(s) will be identified, AG-205 may serve as a new reagent to study endosomal trafficking.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Receptores de Progesterona/antagonistas & inhibidores , Animales , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HeLa , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/biosíntesis , Receptores de Progesterona/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
5.
Mol Phylogenet Evol ; 148: 106814, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278076

RESUMEN

The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.


Asunto(s)
Eucariontes/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Molecular , Proteínas de la Membrana/química , Filogenia , Unión Proteica , Dominios Proteicos , Receptores de Progesterona/química , Receptores de Progesterona/genética
6.
Biochem Biophys Res Commun ; 524(1): 64-69, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31980178

RESUMEN

PGRMC1 is a protein from the MAPR family with a range of cellular functions. PGRMC1 has been described to play a role in fertility, neuroprotection, steroidogenesis, membrane trafficking and in cancer cell biology. PGRMC1 represents a likely key regulator of cell metabolism and proliferation, as well as a potential target for anti-cancer therapies. To further understand the functions of PGRMC1 and the mechanism of the small molecule inhibitor of PGRMC1, AG-205, proteins differentially bound to PGRMC1 were identified following AG-205 treatment of MIA PaCa-2 cells. Our results suggest that AG-205 influences PGRMC1 interactions with the actin cytoskeleton. The binding of two PGRMC1-associated proteins that support this, RACK1 and alpha-Actinin-1, was reduced following AG-205 treatment. The biology associated with PGRMC1 binding partners identified here merits further investigation.


Asunto(s)
Actinas/metabolismo , Indoles/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Receptores de Progesterona/antagonistas & inhibidores , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Humanos , Espectrometría de Masas , Unión Proteica , Receptores de Cinasa C Activada/metabolismo
7.
BMC Evol Biol ; 19(1): 136, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31262250

RESUMEN

BACKGROUND: Nuclear progesterone receptor (nPR) is an evolutionary innovation in vertebrates that mediates genomic responses to progesterone. Vertebrates also respond to progesterone via membrane progesterone receptors (mPRs) or membrane associated progesterone receptors (MAPRs) through rapid nongenomic mechanisms. Lampreys are extant agnathan vertebrates, residing at the evolutionary juncture where vertebrates diverged from invertebrates. A survey of the progesterone receptor (PR) gene sequences in lamprey genomes would inform PR gene evolutionary events during the transition from invertebrates to vertebrates. RESULTS: In this study, we annotated sequences of one nPR, four mPR (ß, γ, δ and ε) and four MAPR genes from genomes of two lamprey species (Petromyzon marinus and Lethenteron japonicum). To infer the origin and evolutionary history of PR genes, we constructed phylogenetic trees of PR homologous sequences across representative species of metazoans. Phylogenetic analyses revealed that the mPRγ gene first appeared in non-bilaterians, and the mPRß gene likely arose from a duplication of mPRγ. On the other hand, the mPRγ gene gave rise to the mPRδ and ε genes much later in the vertebrate lineage. In addition, the mPRα gene first appeared in cartilaginous fishes, likely derived from duplication of mPRß after the agnathan-gnathostome divergence. All known MAPR genes were present in the lamprey genomes. Progesterone receptor membrane component 1 (PGRMC1), neudesin and neuferricin genes probably evolved in parallel in non-bilaterians, whereas two copies of PGRMC genes probably derived from duplication of ancestral PGRMC1 sequence and appeared before the speciation of lampreys. CONCLUSIONS: Non-classical mPR and MAPR genes first evolved in non-bilaterians and classical nPR genes evolved later in basal vertebrates. Sequence repertoires for membrane progesterone receptor genes in vertebrates likely originated from an ancestral metazoan sequence and expanded via several duplication events.


Asunto(s)
Evolución Molecular , Genómica , Petromyzon/genética , Receptores de Progesterona/genética , Homología de Secuencia de Ácido Nucleico , Animales , Filogenia
8.
Front Pharmacol ; 8: 159, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396637

RESUMEN

Membrane-associated progesterone receptors (MAPR) are a group of four rather small, partially homologous proteins, which share a similar non-covalent heme-binding domain that is related to cytochrome b5, a well-known functional interaction partner of microsomal cytochrome P450 (CYP) monooxygenase systems. Apart from their structural similarities the four proteins progesterone membrane component 1 (PGRMC1, also referred to as IZA, sigma-2 receptor, Dap1), PGRMC2, neudesin (NENF) and neuferricin (CYB5D2) display surprisingly divergent and multifunctional physiological properties related to cholesterol/steroid biosynthesis, drug metabolism and response, iron homeostasis, heme trafficking, energy metabolism, autophagy, apoptosis, cell cycle regulation, cell migration, neural functions, and tumorigenesis and cancer progression. The purpose of this mini-review is to briefly summarize the structural and functional properties of MAPRs with particular focus on their interactions with the CYP system. For PGRMC1, originally identified as a non-canonical progesterone-binding protein that mediates some immediate non-genomic actions of progesterone, available evidence indicates mainly activating interactions with steroidogenic CYPs including CYP11A1, CYP21A2, CYP17, CYP19, CYP51A1, and CYP61A1, while interactions with drug metabolizing CYPs including CYP2C2, CYP2C8, CYP2C9, CYP2E1, and CYP3A4 were either ineffective or slightly inhibitory. For the other MAPRs the evidence is so far less conclusive. We also point out that experimental limitations question some of the previous conclusions. Use of appropriate model systems should help to further clarify the true impact of these proteins on CYP-mediated metabolic pathways.

9.
Front Mol Biosci ; 2: 24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042224

RESUMEN

Neudesin was originally identified as a secreted protein with neurotrophic activity, and, thereafter, was also termed neuron-derived neurotrophic factor (NENF) or the candidate oncogene GIG47. Neudesin with a conserved cytochrome 5-like heme/steroid-binding domain activates intracellular signaling pathways possibly through the activation of G protein-coupled receptors. In the brain, hypothalamic Neudesin decreases food intake. Neudesin knockout (KO) mice also exhibit anxiety-like behavior, indicating its roles in the hippocampal anxiety circuitry. Neudesin is also expressed in various peripheral tissues. Neudesin KO mice are strongly resistant to high-fat diet (HFD)-induced obesity due to elevated systemic sympathetic activity, heat production, and adipocytic lipolysis. Neudesin, which is over-expressed or induced by DNA hypomethylation in multiple human cancers, also stimulates tumorigenesis. These findings indicate that Neudesin plays roles in neural functions, energy metabolism, and tumorigenesis and is expected to be a novel target for obesity and anti-cancer treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA