RESUMEN
Cobaltabis(dicarbollides), ferrabis(dicarbollide), and their halogenated derivatives are the most studied metallacarboranes with great medical potential. These versatile compounds and their iodinated derivatives can be used in chemotherapy, radiotherapy, particle therapy, and bioimaging when isotopes are used. These metallacarboranes have been evaluated inâ vitro and recently inâ vivo with complex animal models. Lately, these studies have been complemented using the invertebrate Caenorhabditis elegans (C. elegans), a nematode largely used in toxicology. When evaluated at the L4 stage, cobaltabis(dicarbollides), ([o-COSAN]- and [8,8'-I2 -o-COSAN]- ), exhibited a higher mean lethal dose (LD50 ) than ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2 -o-FESAN]- ). In this work, we used the C. elegans embryos since they are a complex biological barrier with concentric layers of polysaccharides and proteins that protect them from the environment. We assessed if the metal atom changes their biointeraction with the C. elegans embryos. First, we assessed the effects on embryo development for metallacarboranes and their di-iodinated derivatives. We observed changes in color and in their surface structure. An exhaustive physicochemical characterization was performed to understand better this interaction, revealing a stronger interaction of ferrabis(dicarbollide) compounds with C. elegans embryos than the cobaltabis(dicarbollide) molecules. Unveiling the biological interaction of these compounds is of great interest for their future biomedical applications.
Asunto(s)
Aniones , Caenorhabditis elegans , Compuestos Organometálicos , Animales , Metales , Compuestos Organometálicos/química , Cobalto/químicaRESUMEN
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
RESUMEN
The exploitation of metallacarboranes' potential in various fields of research and practical applications requires the availability of convenient and versatile methods for their functionalization with various functional moieties and/or linkers of different types and lengths. Herein, we report a study on cobalt bis(1,2-dicarbollide) functionalization at 8,8'-boron atoms with different hetero-bifunctional moieties possessing a protected hydroxyl function allowing further modification after deprotection. Moreover, an approach to the synthesis of three and four functionalized metallacarboranes, at boron and carbon atoms simultaneously via additional functionalization at carbon to obtain derivatives carrying three or four rationally oriented and distinct reactive surfaces, is described.
RESUMEN
The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2-2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.
RESUMEN
PURPOSE: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS: These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.
RESUMEN
Anionic boron clusters can be used to increase the pharmaceutical properties of the peptides. Here, we describe the method of synthesis of peptide/protein-boron cluster conjugates using solid-state, thermal reaction on two different peptides: thymosin ß4 (Tß4) and lysozyme. 1,4-dioxane oxonium derivatives of anionic boron clusters are used as donors of boron clusters. This procedure allows to conjugate anionic boron clusters to native peptides without loss of the activity of the peptides.
Asunto(s)
Boro/química , Aniones , Péptidos , TimosinaRESUMEN
Platinum compounds remain the first-line drugs for the treatment of most lethal gynecological malignancies and ovarian cancers. Acquired platinum resistance remains a major challenge in gynecological oncology. Considering the unique physicochemical properties of the metallacarboranes modifier and the significant role of nucleoside derivatives as anticancer antimetabolites, we designed and synthesized a set of adenosine conjugates with metallacarboranes containing iron, cobalt, or chromium as semi-abiotic compounds that influence the cisplatin sensitivity of ovarian cancer cells. Adherent cultures of ovarian carcinoma cell lines and multicellular spheroids, ranging from sensitive to highly resistant including experimental cell lines "not responding" to platinum drugs were used. Iron-containing metallacarborane conjugates showed the best anticancer activity, especially against resistant cells. Compound modified at the C2' nucleoside position showed the best activity in resistant cancer cells and highly resistant cancer spheroids exposed to cisplatin, increasing cell cycle arrest, apoptosis or necrosis, and reactive oxygen species production. Moreover, it showed high cellular accumulation and did not induce cross-resistance to cisplatin, carboplatin, doxorubicin, paclitaxel, or gemcitabine in long-term cultures. The reference nido-carborane derivative (no metal ions) and unmodified nucleosides were not as effective. These findings indicate that metallacarborane modification of adenosine may sensitize ovarian cancer cells to cisplatin in combination treatment.
RESUMEN
Pseudomonas aeruginosa is an opportunistic human pathogen that has become a nosocomial health problem worldwide. The pathogen has multiple drug removal and virulence secretion systems, is resistant to many antibiotics, and there is no commercial vaccine against it. Yersinia pestis is a zoonotic pathogen that is on the Select Agents list. The bacterium is the deadliest pathogen known to humans and antibiotic-resistant strains are appearing naturally. There is no commercial vaccine against the pathogen, either. In the current work, novel compounds based on metallacarborane cage were studied on strains of Pseudomonas aeruginosa and a Yersinia pestis substitute, Yersinia enterocolitica. The representative compounds had IC50 values below 10 µM against Y. enterocolitica and values of 20-50 µM against P. aeruginosa. Artificial generation of compound-resistant Y. enterocolitica suggested a common mechanism for drug resistance, the first reported in the literature, and suggested N-linked metallacarboranes as impervious to cellular mechanisms of resistance generation. SEM analysis of the compound-resistant strains showed that the compounds had a predominantly bacteriostatic effect and blocked bacterial cell division in Y. enterocolitica. The compounds could be a starting point towards novel anti-Yersinia drugs and the strategy presented here proposes a mechanism to bypass any future drug resistance in bacteria.
Asunto(s)
Antibacterianos/farmacología , Boranos/química , Compuestos Organometálicos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Yersiniosis/tratamiento farmacológico , Yersinia enterocolitica/efectos de los fármacos , Humanos , Infecciones por Pseudomonas/microbiología , Yersiniosis/microbiologíaRESUMEN
Since the foundation of small molecule-based therapeutics over 100 years ago, their design has been dominated by organic based components. This has also been apparent in anti-cancer therapeutics in a broad range of strategies; from the older DNA chelating drugs, to the more recent molecular-targeted therapies. The main challenges facing current treatments; multidrug resistance and low therapeutic index, can potentially be alleviated by the incorporation of boron clusters. While retaining the versatility of their organic counterparts, these compounds offer a unique set of molecular interactions, which are a useful tool in targeted therapies and can improve many organic formulations with their incorporation. This review will discuss the potential of boron clusters in medicine while focusing on their activity in the breast cancer setting.
Asunto(s)
Compuestos de Boro/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , HumanosRESUMEN
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened inâ vitro or inâ vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Asunto(s)
Boranos/química , Nanomedicina , Boranos/síntesis química , Química FarmacéuticaRESUMEN
A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3'-Co(1,2-C2B9H11)2]- (H[1]), termed MSNPs-NH2@H[1], are highly stable and do not produce any leakage of the photoredox catalyst H[1] in water. The magnetite MNPs were coated with SiO2 to provide colloidal stability and silanol groups to be tethered to amine-containing units. These were the MSNPs-NH2 on which was anchored, in water, the cobaltabis(dicarbollide) complex H[1] to obtain MSNPs-NH2@H[1]. Both MSNPs-NH2 and MSNPs-NH2@H[1] were evaluated to study the morphology, characterization, and colloidal stability of the MNPs produced. The heterogeneous MSNP-NH2@H[1] system was studied for the photooxidation of alcohols, such as 1-phenylethanol, 1-hexanol, 1,6-hexanediol, or cyclohexanol among others, using catalyst loads of 0.1 and 0.01 mol %. Surfactants were introduced to prevent the aggregation of MNPs, and cetyl trimethyl ammonium chloride was chosen as a surfactant. This provided adequate stability, without hampering quick magnetic separation. The results proved that the catalysis could be speeded up if aggregation was prevented. The recyclability of the catalytic system was demonstrated by performing 12 runs of the MSNPs-NH2@H[1] system, each one without loss of selectivity and yield. The cobaltabis(dicarbollide) catalyst supported on silica-coated magnetite nanoparticles has proven to be a robust, efficient, and easily reusable system for the photooxidation of alcohols in water, resulting in a green and sustainable heterogeneous catalytic system.
RESUMEN
Metalla-bis-dicarbollides, such as the cobalta-bis-dicarbollide (COSAN) anion [Co(C2 B9 H11 )2 ]- , have attracted much attention in biology but a deep understanding of their interactions with cell components is still missing. For this purpose, we studied the interactions of COSAN with the glucose moiety, which is ubiquitous at biological interfaces. Octyl-glucopyranoside surfactant (C8G1) was chosen as a model as it self-assembles in water and creates a hydrated glucose-covered interface. At low COSAN content and below the critical micellar concentration (CMC) of C8G1, COSAN binds to C8G1 monomers through the hydrophobic effect. Above the CMC of C8G1, COSAN adsorbs onto C8G1 micelles through the superchaotropic effect. At high COSAN concentrations, COSAN disrupts C8G1 micelles and the assemblies become similar to COSAN micelles but with a small amount of solubilized C8G1. Therefore, COSAN binds in a versatile way to C8G1 through either the hydrophobic or superchaotropic effect depending on their relative concentrations.
RESUMEN
High boron content systems were prepared by the peripheral functionalisation of 1,3,5-triphenylbenzene (TPB) and octavinylsilsesquioxane (OVS) with two different anionic boron clusters: closo-dodecaborate (B12) and cobaltabisdicarbollide (COSAN). TPB was successfully decorated with three cluster units by an oxonium ring-opening reaction, while OVS was bonded to eight clusters by catalysed metathesis cross-coupling. The resulting compounds were spectroscopically characterised, and their solution-state photophysical properties analysed. For TPB, the presence of COSAN dramatically quenches the fluorescence emission (λem = 369 nm; ΦF = 0.8%), while B12-substituted TPB shows an appreciable emission efficiency (λem = 394 nm; ΦF = 12.8%). For octasilsesquioxanes, the presence of either COSAN or B12 seems to be responsible for â¼80 nm bathochromic shift with respect to the core emission, but both cases show low emission fluorescence (ΦF = 1.4-1.8%). In addition, a remarkable improvement of the thermal stability of OVS was observed after its functionalisation with these boron clusters.
Asunto(s)
Compuestos de Boro/química , Compuestos de Organosilicio/química , Polímeros/química , Aniones/química , Compuestos de Boro/síntesis química , Fluorescencia , Colorantes Fluorescentes/química , Espectroscopía de Resonancia Magnética , Procesos Fotoquímicos , Polielectrolitos , Polímeros/síntesis química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , TermogravimetríaRESUMEN
Symmetrically and unsymmetrically substituted methylsulfanyl derivatives of nickel(III) bis(dicarbollide) (Bu4N)[8,8'-(MeS)2-3,3'-Ni(1,2-C2B9H10)2], (Bu4N)[4,4'-(MeS)2-3,3'-Ni(1,2-C2B9H10)2], and (Bu4N)[4,7'-(MeS)2-3,3'-Ni(1,2-C2B9H10)2] were synthesized, starting from [Ni(acac)2]3 and the corresponding methylsulfanyl derivatives of nido-carborane (Bu4N)[10-MeS-7,8-C2B9H11] and (Bu4N)[10-MeS-7,8-C2B9H11]. Structures of the synthesized metallacarboranes were studied by single-crystal X-ray diffraction and quantum chemical calculations. The symmetrically substituted 8,8'-isomer adopts transoid conformation stabilized by two pairs of intramolecular C-H···S hydrogen bonds between the dicarbollide ligands. The unsymmetrically substituted 4,7'-isomer adopts gauche conformation, which is stabilized by two nonequivalent C-H···S hydrogen bonds and one short chalcogen B-H···S bond (2.53 Å, -1.4 kcal/mol). The gauche conformation was found to be also preferred for the 4,7'-isomer.
Asunto(s)
Níquel/química , Compuestos de Azufre/química , Compuestos de Azufre/síntesis química , Aniones , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Difracción de Rayos XRESUMEN
Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer synthesis along with their accompanying cations. In this work, the influence of these cations on the stoichiometry and physicochemical properties of the resulting COPs have been investigated, something that has previously been overlooked, but, as here proven, is highly relevant. As the doping anion, metallacarborane [Co(C2 B9 H11 )2 ]- was chosen, which acts as a thistle. This anion binds to the accompanying cation with a distinct strength. If the binding strength is weak, the doping anion is more prone to compensate the positive charge of the polymer, and the opposite is also true. Thus, the ability of the doping anion to compensate the positive charges of the polymer can be tuned, and this determines the stoichiometry of the polymer. As the polymer, PEDOT was studied, whereas Cs+ , Na+ , K+ , Li+ , and H+ as cations. Notably, with the [Co(C2 B9 H11 )2 ]- anions, these cations are grouped into two sets, Cs+ and H+ in one and Na+ , K+ , and Li+ in the second, according to the stoichiometry of the COPs: 2:1 EDOT/[Co(C2 B9 H11 )2 ]- for Cs+ and H+ , and 3:1 EDOT/[Co(C2 B9 H11 )2 ]- for Na+ , K+ , and Li+ . The distinct stoichiometries are manifested in the physicochemical properties of the COPs, namely in the electrochemical response, electronic conductivity, ionic conductivity, and capacitance.
RESUMEN
Metallacarboranes are anionic boron clusters with high affinity to serum albumin, ability to cross biological membranes, and no apparent toxicity in vitro and in vivo. Thus, conjugation with cobalt bis(1,2-dicarbollide), [COSAN]- , ([3,3'-Co(1,2-C2 B9 H11 )2 ]- ) may improve the properties of therapeutic peptides or proteins at both molecular and systemic levels. Here, we conjugated [COSAN]- with the therapeutic peptide thymosin ß4 (Tß4), which has a pleiotropic activity that results in enhanced healing and regeneration of injured tissues. Using fluorescence quenching of human serum albumin and surface plasmon resonance techniques, we showed that the conjugates have a high affinity to human serum albumin. Using an in vitro wound closure assay, we showed that conjugation with [COSAN]- enhances the activity of Tß4 toward fibroblasts (MSU1.1 cell line). These results indicate an application of metallacarboranes in the development of analogs of various therapeutic peptides/proteins with superior pharmacological properties.
Asunto(s)
Albúminas/análisis , Boranos/química , Membrana Celular/metabolismo , Cobalto/química , Metales/química , Péptidos/química , Aniones/química , Línea Celular , Dicroismo Circular , Complejos de Coordinación/química , Fibroblastos/metabolismo , Humanos , Cinética , Estructura Terciaria de Proteína , Albúmina Sérica/química , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Resonancia por Plasmón de Superficie , Timosina/químicaRESUMEN
An inorganic sandwich molecule, Na[Co(C2 B9 H11 )2 ], able to produce vesicles through self-assembly and known to produce strong dihydrogen-bond interactions with amine groups is capable of interacting with proteins. This dual non-bonding ability of Na[Co(C2 B9 H11 )2 ] is what makes this molecule unique: it can be firmly anchored to a protein surface and is capable of extending over it. To prove this, the widely available bovine serum albumin (BSA), which has many pendant amino groups in its structure, has been taken as the model protein. It has been found that around 100 molecules of Na[Co(C2 B9 H11 )2 ] preserve the native structure of BSA, while endorsing it with a significantly increased stability with respect to chemical- and thermal-induced denaturation due to efficient encapsulation. The advantages of this encapsulation technique are two-fold; the first is its simplicity as it relies on the anchoring capacity of Na[Co(C2 B9 H11 )2 ] to the surface of the protein through the amine-containing residues and the second is its self-assembling capacity allowing it to spread across the surface. The dense shield of protection offered by Na[Co(C2 B9 H11 )2 ] has been demonstrated by the inhibition of BSA pseudo-esterase activity, which indicates that the inorganic corset around BSA protects its reactive surface residues, thereby preventing their acetylation.
Asunto(s)
Boranos/química , Compuestos Organometálicos/química , Albúmina Sérica Bovina/metabolismo , Animales , Desnaturalización Proteica , Albúmina Sérica Bovina/químicaRESUMEN
A mini-review based on radial growing macromolecules and core initiated Borane periphery decorated with o-carboranes and metallacarboranes that has been developed in the authors laboratories is reported. The review is divided into four sections; three of them are related to the design and synthesis of these large boron-containing molecules and the fourth deals with the unique properties of anionic metallacarborane molecules that provide a glimpse of their potential for their promising use in medicinal applications. Their unique stability along with their geometrical and electronic properties, as well as the precise steric structure of 1,2-closo-C2B10H12 (o-carborane) that has the potential for the incorporation of many substituents: at the carbon (Cc), at the boron and at both carbon and boron vertices, suggests this cluster as an innovative building block or platform for novel applications that cannot be achieved with organic hydrocarbon compounds. Poly(aryl-ether) dendrimers grown from fluorescent cores, such as 1,3,5-triarylbenzene or meso-porphyrins, have been decorated with boron clusters to attain rich boron containing dendrimers. Octasilsesquioxane cubes have been used as a core for its radial growth to get boron-rich large molecules. The unique properties of cobaltabisdicarbollide cluster, which include: i) self-assembly in water to produce monolayer nano-vesicles, ii) crossing lipid bilayer membranes, iii) interacting with membrane cells, iv) facilitating its visualization within cells by Raman and fluorescence techniques and v) their use as molecular platform for "in vivo" imaging are discussed in detail.
RESUMEN
Together with tremendous progress in biotechnology, nucleic acids, while retaining their status as "molecules of life", are becoming "molecular wires", materials for the construction of molecular structures at the junction between the biological and abiotic worlds. Herein, we present an overview of the approaches for incorporating metal centers into nucleic acids based on metalâ»boron cluster complexes (metallacarboranes) as the metal carriers. The methods are modular and versatile, allowing practical access to innovative metal-containing DNA for various applications, such as nucleic acid therapeutics, electrochemical biosensors, infrared-sensitive probes, and building blocks for nanoconstruction.
Asunto(s)
Boro/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , ADN/química , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Química ClicRESUMEN
After uptake by U87 MG and A375 cancer cells, cobaltabisdicarbollide [COSAN]- distributes between membrane and nucleus and presents no relevant cytotoxicity against both cell lines even for long incubation times. The cytotoxicity of Na[COSAN] was also tested towards one normal cell line, the V79 fibroblasts, in order to ascertain the noncytotoxic profile of the compound. As the cell's nucleus contains DNA, the interaction between [COSAN]- and double-stranded calf thymus DNA (CT-dsDNA) has been investigated. There is a strong interaction between both molecules forming a nanohybrid CT-dsDNA-[COSAN] biomaterial, which was fully characterized. Moreover, Na[COSAN] shows characteristic redox peaks ascribed to the oxidation/reduction of Co3+/2+ at a formal potential of -1.444â V and it can be accumulated at a surface-immobilized DNA layer of glassy carbon electrodes. The equilibrium surface-binding constants (Kox /Kred ), which confirm that [COSAN]- interacts with DNA by an intercalative or electrostatic mode, depending on the ionic strength of the solution, were estimated. In addition, high binding affinity of Na[COSAN] to proteins was observed by 11 B{1 H}â NMR and confirmed in vivo. Finally, biodistribution studies of [COSAN]- in normal mice were run. After administration, Na[COSAN] was distributed into many organs but mainly accumulated in the reticuloendothelial system (RES), including liver and spleen. After 1â h, the formation of aggregates by plasma protein interaction plays a role in the biodistribution profile; the aggregates accumulate mostly in the lungs. Na[COSAN], which displays low toxicity and high uptake by relevant cancer cells accumulating boron within the nucleus, could act as a suitable compound for further developments as boron neutron capture therapy (BNCT) agents.