Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioelectrochemistry ; 159: 108753, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38833812

RESUMEN

MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Sistemas CRISPR-Cas , Técnicas Electroquímicas , Exosomas , MicroARNs , Exosomas/química , Exosomas/metabolismo , Humanos , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , MicroARNs/análisis , MicroARNs/genética , Femenino , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas de Magnetita/química , Proteínas Bacterianas , Endodesoxirribonucleasas , Proteínas Asociadas a CRISPR
2.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730605

RESUMEN

Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be enriched with miRNAs, including miR-1246, possibly contributing to disease aggressiveness. We aimed to decipher the functional impact of exosomal miR-1246 on recipient cells and its role in promoting aggressiveness. Treatment of normal fibroblasts with FN-RMS-derived exosomes resulted in a significant uptake of miR-1246 paired with an increase in cell proliferation, migration, and invasion. In turn, delivery of miR-1246-mimic lipoplexes promoted fibroblast proliferation, migration, and invasion in a similar manner. Conversely, when silencing miR-1246 in FN-RMS cells, the resulting derived exosomes demonstrated reversed effects on recipient cells' phenotype. Delivery of exosomal miR-1246 targets GSK3ß and promotes ß-catenin nuclear accumulation, suggesting a deregulation of the Wnt pathway, known to be important in tumor progression. Finally, a pilot clinical study highlighted, for the first time, the presence of high exosomal miR-1246 levels in RMS patients' sera. Altogether, our results demonstrate that exosomal miR-1246 has the potential to alter the tumor microenvironment of FN-RMS cells, suggesting its potential role in promoting oncogenesis.

3.
Photochem Photobiol Sci ; 23(5): 957-972, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613601

RESUMEN

Stem cell paracrine has shown potential application in skin wound repair and photoaging treatment. Our previous study demonstrated that miR-1246-overexpressing Exosomes (OE-EXs) isolated from adipose-derived stem cells (ADSCs) showed superior photo-protecting effects on UVB-induced photoaging than that of the vector, however, the underlying mechanism was unclear. The simultaneous bioinformatics analysis indicated that miR-1246 showed potential binding sites with GSK3ß which acted as a negative regulator for autophagy. This study was aimed to explore whether OE-EXs ameliorate skin photoaging by activating autophagy via targeting GSK3ß. The results demonstrated that OE-EXs significantly decreased GSK3ß expression, enhanced autophagy flux and autophagy-related proteins like LC3II, while suppressed p62 expression. Meanwhile, OE-EXs markedly reversed the levels of intracellular ROS, MMP-1, procollagen type I and DNA damage in human skin fibroblasts caused by UVB irradiation, but the ameliorating effects were significantly inhibited when 3-Methyladenine (3-MA) was introduced to block the autophagy pathway. Further, OE-EXs could reverse UVB-induced wrinkles, epidermal hyperplasia, and collagen fibers reduction in Kunming mice, nevertheless, the therapeutical effects of OE-EXs were attenuated when it was combinative treated with 3-MA. In conclusion, OE-EXs could cure UVB induced skin photoaging by activating autophagy via targeting GSK3ß.


Asunto(s)
Autofagia , Exosomas , Glucógeno Sintasa Quinasa 3 beta , MicroARNs , Envejecimiento de la Piel , Rayos Ultravioleta , Animales , Humanos , Ratones , Células Cultivadas , Exosomas/metabolismo , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación
4.
MedComm (2020) ; 5(4): e543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585233

RESUMEN

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

5.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474054

RESUMEN

Colorectal cancer (CRC) is a multifactorial disease involving genetic and epigenetic factors, such as miRNAs. Sequencing-based studies have revealed that miRNAs have many isoforms (isomiRs) with modifications at the 3'- and 5'-ends or in the middle, resulting in distinct targetomes and, consequently, functions. In the present study, we aimed to evaluate the putative targets and functional role of miR-1246 and its two 5'-isoforms (ISO-miR-1246_a and ISO-miR-1246_G) in vitro. Commercial Caco-2 cells of CRC origin were analyzed for the expression of WT-miR-1246 and its 5'-isoforms using small RNA sequencing data, and the overabundance of the two miR-1246 isoforms was determined in cells. The transcriptome analysis of Caco-2 cells transfected with WT-miR-1246, ISO-miR-1246_G, and ISO-miR-1246_a indicated the minor overlap of the targetomes between the studied miRNA isoforms. Consequently, an enrichment analysis showed the involvement of the potential targets of the miR-1246 isoforms in distinct signaling pathways. Cancer-related pathways were predominantly more enriched in dysregulated genes in ISO-miR-1246_G and ISO-miR-1246_a, whereas cell cycle pathways were more enriched in WT-miR-1246. The functional analysis of WT-miR-1246 and its two 5'-isoforms revealed that the inhibition of any of these molecules had a tumor-suppressive role (reduced cell viability and migration and promotion of early cell apoptosis) in CRC cells. However, the 5'-isoforms had a stronger effect on viability compared with WT-miR-1246. To conclude, this research shows that WT-miR-1246 and its two 5'-isoforms have different targetomes and are involved in distinct signaling pathways but collectively play an important role in CRC pathogenesis.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Células CACO-2 , MicroARNs/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica
6.
Mol Biol Rep ; 51(1): 341, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400867

RESUMEN

INTRODUCTION: Oral Squamous Cell Carcinoma (OSCC) is one of the leading cancers worldwide, significantly impacting developing nations. This study aimed to explore the diagnostic and prognostic potential of miR-155-5p and miR-1246 in OSCC in the Indian population, as their comparative roles in this context remain unexplored. MATERIAL AND METHODS: The present cross-sectional study comprised 50 histopathologically confirmed OSCC cases, with adjacent normal mucosa as controls. MiRNA expression was assessed via qRT-PCR and correlated with clinicopathological factors. MiRwalk and miRTargetlink were used for miRNA:mRNA interaction prediction, and gprofiler was employed to analyze validated targets for functional insights. RESULTS: The expression analysis showed a significant upregulation of miR-155-5p and miR-1246 in OSCC tissues compared to adjacent controls. Receiver operating curve analysis revealed that miR-1246 exhibited excellent diagnostic accuracy (AUC = 0.94) compared to miR-155-5p (AUC = 0.69). Higher miRNA levels were associated with age and extracapsular extension while overexpression of miR-1246 was correlated significantly with increased tumor size, tumor grade, TNM staging, and depth of invasion. The analysis for target prediction unveiled a set of validated targets, among which were WNT5A, TP53INP1, STAT3, CTNNB1, PRKAR1A, and NFIB. CONCLUSION: miR-155-5p and miR-1246 may be used as potential prognostic biomarkers in OSCC, with miR-1246 demonstrating superior diagnostic accuracy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Pronóstico , Estudios Transversales , MicroARNs/metabolismo , Neoplasias de Cabeza y Cuello/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética , Proteínas Portadoras/genética , Proteínas de Choque Térmico/metabolismo
7.
Chem Biol Interact ; 387: 110809, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38006958

RESUMEN

BACKGROUND: Hydroquinone (HQ), a major metabolite of benzene and known hematotoxic carcinogen. MicroRNA 1246 (miR-1246), an oncogene, regulates target genes in carcinogenesis including leukemia. This study investigates the impact of exosomal derived miR-1246 from HQ-transformed (HQ19) cells on cell-to-cell communication in recipient TK6 cells. METHODS: RNA sequencing was used to identify differentially expressed exosomal miRNAs in HQ19 cells and its phosphate buffered solution control cells (PBS19), which were then confirmed using qRT-PCR. The impact of exosomal miR-1246 derived from HQ-transformed cells on cell cycle distribution was investigated in recipient TK6 cells. RESULTS: RNA sequencing analysis revealed that 34 exosomal miRNAs were upregulated and 158 miRNAs were downregulated in HQ19 cells compared with PBS19 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses predicted that their targets are enriched in cancer development-related pathways, such as MAPK signaling, microRNAs in cancer, apoptosis, PI3K-Akt signaling, cell cycle, Ras signaling, and Chronic myeloid leukemia. Eleven miRNAs were confirmed to have differential expression through qRT-PCR, with 6 upregulated (miR-140-3p, miR-551b-3p, miR-7-5p, miR-1290, miR-92a-3p, and miR-1246) and 5 downregulated (miR-183-5p, miR-26a-5p, miR-30c-5p, miR-205-5p, and miR-99b-3p). Among these, miR-1246 exhibited the highest expression level. HQ exposure resulted in a concentration-dependent increase in miR-1246 levels and decrease Cyclin G2 (CCNG2) levels in TK6 cells. Similarly, exosomes from HQ19 exhibited similar effects as HQ exposure. Dual luciferase reporter gene assays indicated that miR-1246 could band to CCNG2. After HQ exposure, exosomal miR-1246 induced cell cycle arrest at the S phase, elevating the expression of genes like pRb, E2F1, and Cyclin D1 associated with S phase checkpoint. However, silencing miR-1246 caused G2/M-phase arrest. CONCLUSION: HQ-transformed cells' exosomal miR-1246 targets CCNG2, regulating TK6 cell cycle arrest, highlighting its potential as a biomarker for HQ-induced malignant transformation.


Asunto(s)
Ciclina G2 , MicroARNs , Humanos , Ciclina G2/genética , Ciclina G2/metabolismo , Fase S , Hidroquinonas/toxicidad , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transformación Celular Neoplásica
8.
BMC Cancer ; 23(1): 955, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814227

RESUMEN

The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.


Asunto(s)
Leucemia , MicroARNs , Humanos , MicroARNs/metabolismo , Células HL-60 , Doxorrubicina/farmacología , Ciclo Celular/genética , Leucemia/tratamiento farmacológico , Leucemia/genética , Ciclinas , Proliferación Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Molécula 1 de Adhesión Celular/genética
9.
Noncoding RNA Res ; 8(2): 205-210, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36865390

RESUMEN

The molecular alterations in noncoding RNA can lead to a cellular storm that is correlated to higher mortality and morbidity rates and contributes to the progression and metastasis of cancer. Herein, we aim to evaluate the expression levels and correlations of microRNA-1246 (miR-1246), HOX transcript antisense RNA (HOTAIR), and interleukin-39 (IL-39) in patients with breast cancer (BC). In this study, 130 participants were recruited, including 90 breast cancer patients and 40 healthy control participants. Serum levels of miR-1246 and HOTAIR expression were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Also, the level of IL-39 expression was evaluated using a Western blot. All BC participants demonstrated a remarkable elevation in miR-1246 and HOTAIR expression levels. Moreover, IL-39 expression levels demonstrated a noticeable decline in BC patients. Furthermore, the differential expression fold of miR-1246 and HOTAIR revealed a strong positive correlation among breast cancer patients. In addition, a negative relationship between the IL-39 and the miR-1246 and HOTAIR differential expression was also noticed. This study revealed that HOTAIR/miR-1246 exerts an oncogenic impact in patients with breast cancer. The expression levels of circulation miR-1246, HOTAIR, and IL-39 could be considered early diagnostic biomarkers in BC patients.

10.
Mol Med Rep ; 27(4)2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36960865

RESUMEN

MicroRNA (miRNA/miR) 5'­isoforms (5'­isomiRs) differ from canonical sequences registered in the microRNA database in the length of their 5' ends. The 'seed sequence' of miRNAs that bind to target mRNAs is 2­8 nucleotides from the 5' end; thus, shifts at the 5' end can cause a 'seed shift'. Accumulating data from miRNA deep sequencing have revealed that, in a substantial number of miRNAs, sequences corresponding to specific isomiRs, not the canonical form, are the most abundant. Studies have so far focused on circulating miRNAs as either markers or intercellular communication factors. miR­1246 is abundant in the serum and is a candidate diagnostic and prognostic marker for esophageal squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma, colorectal adenocarcinoma and non­small cell lung cancer (NSCLC). The present study analyzed the 5'­end of serum miR­1246 by fragment analysis and found that a 5'­isomiR, which is two bases shorter than the canonical sequence, was the most abundant sequence in patients with NSCLC as well as healthy donors. To quantify the 5'­isomiR, 5'­isomiR­specific primers based on primers for allele specific­PCR were used, primarily because commercially available methods for miRNA Reverse transcription­quantitative PCR cannot discriminate among sequences, especially those located at the 5' end of miRNA. The total miR­1246 levels were significantly increased in patients with NSCLC; by contrast, the level of the canonical sequence was significantly decreased. Significant positive correlations were observed between the total miR­1246 levels and the 5'­isomiR levels, but not that of the canonical sequence. These results imply that the increase in levels of serum miR­1246 in patients with NSCLC depends on increase of the 5'­isomiR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , MicroARNs/metabolismo , Biomarcadores de Tumor/genética
11.
Viruses ; 15(2)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36851710

RESUMEN

Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1ß, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , SARS-CoV-2 , Transcriptoma , Renina , Proteómica , Proteínas Proto-Oncogénicas c-akt , COVID-19/genética
12.
Photochem Photobiol Sci ; 22(1): 135-146, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36114328

RESUMEN

Stem cell therapy is widely employed for the treatment of skin diseases, especially in skin rejuvenation. Exosomes derived from stem cells have been demonstrated to possess anti-photoaging effects; however, the precise components within exosomes that are responsible for this effect remain unknown. Previously, miR-1246 was found to be one of the most abundant nucleic acids in adipose-derived stem cells (ADSCs)-derived exosomes. This study examined whether miR-1246 was the major therapeutic agent employed by ADSCs to protect against UVB-induced photoaging. Lentivirus infection was used to obtain miR-1246-overexpressing ADSCs and exosomes. We then determined the anti-photoaging effects of miR-1246-overexpressing exosomes (OE-EX) on both UVB-irradiated human skin fibroblasts (HSFs) and Kunming mice. The results showed that OE-EX could significantly decrease MMP-1 by inhibiting the MAPK/AP-1 signaling pathway. Meanwhile, OE-EX markedly increased procollagen type I secretion by activating the TGF-ß/Smad pathway. OE-EX also exhibited an anti-inflammatory effect by preventing the UVB-induced degradation of IκB-α and NF-κB overexpression. Animal experiments demonstrated that OE-EX could reduce UVB-induced wrinkle formation, epidermis thickening, and the loss of collagen fibers reduction in Kunming mice. The combined results suggested that miR-1246 is the key component within ADSCs-derived exosomes that protects against UVB-induced skin photoaging.


Asunto(s)
Exosomas , MicroARNs , Envejecimiento de la Piel , Enfermedades de la Piel , Ratones , Animales , Humanos , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Exosomas/metabolismo , Piel , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/farmacología , Enfermedades de la Piel/metabolismo , Rayos Ultravioleta , Fibroblastos
13.
Transl Oncol ; 27: 101594, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463825

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common tumor that metastasizes to the brain. It is now accepted that the successful colonization and growth of tumor cells are determined by the interaction between tumor cells and the tumor microenvironment (TME). Microglia, brain innate immune cells, have been reported to play a vital role in the establishment of brain metastases. As essential mediators of intercellular communications, tumor-derived exosomes have an important role in the pathogenesis and progression of cancer by transferring their cargos to specific recipient cells. The crosstalk between microglia and tumor-derived exosomes has been extensively described. However, it is still unclear whether metastatic NSCLC cells secret exosomes to microglia and regulate the microglial functions. Here, our results showed that microglia aggregated in the brain metastatic sites. Meanwhile, microglia could take up the exosomes derived from NSCLC cells, leading to alterations of microglial morphology and increased proliferation, phagocytosis, and release of inflammatory cytokines including interleukin-6, interleukin-8, and CXCL1. Further investigation indicated that miR1246 was the most enriched microRNA in NSCLC-derived exosomes and mediated the partial effects of exosomes on microglia. Notably, miR1246 was also upregulated in the plasmatic exosomes of NSCLC patients. These results offer a new insight into the impact of NSCLC-derived exosomes on microglia and provide a new potential biomarker for diagnosing NSCLC.

14.
Front Oncol ; 12: 943477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158698

RESUMEN

Exosomes secreted by cancer cells are important components in the tumor microenvironment, enabling cancer cells to communicate with each other and with noncancerous cells to play important roles in tumor progression and metastasis. Phenformin, a biguanide antidiabetic drug, has been reported to have a strong antitumor function in multiple types of cancer cells, however little research has been reported about whether phenformin can regulate the secretion of exosomes by cancer cells to regulate the tumor microenvironment and contribute to its antitumor function. Here we found that exosomes (Phen-Exo) derived from phenformin-treated oral squamous cell carcinoma (OSCC) cells significantly suppress the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. The inhibition of angiogenesis by Phen-Exo was verified in vivo by matrigel plug angiogenesis assays and by chick chorioallantoic membrane assays. Mechanistically, we discovered that the expression of microRNA-1246 (miR-1246) and microRNA-205 (miR-205) was significantly increased in exosomes secreted by OSCC cells treated with phenformin, while high expression levels of miR-1246 or miR-205 in vascular endothelial cells inhibited their angiogenic effects and decreased expression of the angiogenic factor VEGFA. In conclusion, these results reveal that phenformin can inhibit angiogenesis by regulating the levels of miR-1246 and miR-205 in exosomes secreted by OSCC cells, suggesting that phenformin has the potential to alter the tumor microenvironment to antagonize the growth of OSCCs, which provides a theoretical basis for developing new strategies to treat OSCCs in the future.

15.
Hematology ; 27(1): 778-784, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35793786

RESUMEN

BACKGROUND/OBJECTIVE: Bone marrow biopsy, the gold standard for the diagnosis of multiple myeloma (MM), has main limitation of the invasiveness. Here, we explored the diagnostic and prognostic values of circulating miR-1246 in patients with MM. MATERIAL AND METHODS: Ninety MM patients and 30 healthy donors (control group) were recruited in this study. The expression of miR-1246 in the peripheral blood samples was detected using qPCR. The receiver operating characteristic (ROC) curve was used to assess the diagnostic value of miR-1246 in MM. The Kaplan-Meier survival analyze was performed to evaluate the prognostic value of miR-1246. RESULTS: The expression level of serum miR-1246 from newly diagnosed MM patients was significantly higher than that of the control group. Circulating miR-1246 level was decreased after treatment in remission patients, but remained high levels in relapsed patients (P < 0.05). ROC analysis demonstrated that miR-1246 showed a high diagnostic value in MM with an area under the curve (AUC) of 0.952, the sensitivity of 87%, and the specificity of 95% [95% confidence interval (CI) 0.902-1.007; P < 0.001]. Kaplan-Meier analysis showed that the progression-free survival (PFS) (14.0 months vs. 26.5 months, P = 0.045) and overall survival (OS) (20.5 months vs. 55.5 months, P = 0.014) were significantly shorter in patients with high miR-1246 expression as compared with those in patients with miR-1246 low expression. Multiple Cox regression model analysis showed that circulating miR-1246 was an independent prognostic factor for PFS (HR 2.786, 95% CI: 1.420-5.467, P = 0.003) and OS (HR 2.995, 95% CI: 1.166-7.689, P = 0.023) in MM patients. CONCLUSION: This study demonstrates that circulating miR-1246 level is elevated in MM patients, which shows high values in the diagnosis and prognosis prediction in patients with MM.


Asunto(s)
MicroARNs , Mieloma Múltiple , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Humanos , Estimación de Kaplan-Meier , MicroARNs/sangre , MicroARNs/genética , Mieloma Múltiple/sangre , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Pronóstico
16.
Environ Toxicol ; 37(11): 2651-2659, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35894553

RESUMEN

The stemness of lung cancer cells contributes to drug resistance, tumor occurrence, progression, and recurrence; however, the underlying mechanisms are still fragmentary. In the present study, it was found that exosomes from cisplatin-resistant cells and spheres derived from lung cancer cells enhanced the stemness of the parental lung cancer cells. Then we screened the upregulated miRNAs in spheres derived from lung cancer cells and cisplatin-resistant lung cancer cells/exosomes compared to that in the parental lung cancer cells. It was found that miR-1246 was remarkably enriched in cisplatin-resistant lung cancer cells/exosomes and spheres. Additionally, inhibition of miR-1246 attenuated the stemness of lung cancer cells induced by exosomes from cisplatin-resistant cells and spheres. Furthermore, TRIM17 was identified to the direct target of miR-1246 in lung cancer cells. Our findings suggest that exosomal miR-1246 could be as a potential target for lung cancer treatment.


Asunto(s)
Exosomas , Neoplasias Pulmonares , MicroARNs , Proteínas de Motivos Tripartitos , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Exosomas/genética , Exosomas/patología , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas
17.
Cancer Lett ; 542: 215735, 2022 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-35569696

RESUMEN

Ovarian cancer is mostly diagnosed at advantaged stages due to the lack of early diagnostic biomarkers. The common metastasis pattern is characterized by peritoneal dissemination with a formation of malignant ascites. Extracellular vesicles (EVs) are emerging as promising clinical biomarkers in liquid biopsy. Here, we aimed to investigate robust liquid biopsy-based EV miRNA biomarkers for ovarian cancer diagnosis and metastasis regulation. EVs were isolated from malignant ascites and plasma of ovarian cancer patients as well as the benign control counterparts of patients with benign gynecologic diseases. EV small RNA sequencing identified a panel of eight miRNAs (miR-1246, miR-1290, miR-483, miR-429, miR-34b-3p, miR-34c-5p, miR-145-5p, miR-449a) based on dysregulated miRNAs overlapped in the ascites and plasma subset. The ovarian cancer EV miRNA (OCEM) signature developed based on these eight miRNAs demonstrated high diagnostic accuracy in our in-house dataset and multiple public datasets across diverse clinical samples (blood, tissue and urine). In addition, malignant ascites-derived EVs could significantly facilitate the aggressive property of ovarian cancer cells and boost the growth of ascites-derived organoids. Notably, miR-1246 and miR-1290 shuttled in malignant ascites-derived EVs were identified to promote the invasion and migration of ovarian cancer cells through regulating a common target RORα.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias Ováricas , Ascitis/diagnóstico , Ascitis/genética , Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
18.
Stem Cell Res Ther ; 13(1): 89, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241153

RESUMEN

BACKGROUND: Anti-angiogenic therapy has been shown to be a promising strategy for anti-tumor treatment. Increasing evidence indicates that tumor angiogenesis is affected by exosomes that are secreted by mesenchymal stem cells (MSCs), but whether exosomes derived from MSCs suppress or promote angiogenesis remain paradoxical. The purpose of this study focused on understanding the potential role of exosomes derived from stem cells of human deciduous exfoliated teeth (SHED-Exos) in regulating angiogenesis and the underlying molecular mechanism. METHODS: Exosomes were isolated from supernatants of SHED cells using an exosome purification kit and were characterized by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Cell Counting Kit-8, flow cytometric assays, western blots, wound healing and transwell migration assays were performed to characterize the roles of SHED-Exos on cell proliferation, apoptosis and migration of human umbilical vein endothelial cells (HUVECs). The anti-angiogenic activity of SHED-Exos was assessed via a tube formation assay of endothelial cells and angiogenesis-related factors were analyzed by western blotting. In vivo, we used the chick chorioallantoic membrane (CAM) assay and an oral squamous cell carcinoma (OSCC) xenograft transplantation model with nude mice that received multi-point injections at three-day intervals to evaluate the effects on angiogenesis. Furthermore, the sequencing of microRNAs (miRNAs) in SHED-Exos was performed to investigate the underlying anti-angiogenic mechanism. RESULTS: The results showed that SHED-Exos inhibit cell proliferation and migration and induce apoptosis in HUVECs. SHED-Exos suppress the tube-like structure formation of HUVECs in vitro. SHED-Exos downregulate several angiogenesis-related factors, including VEGFA, MMP-9 and ANGPT1. In vivo, the chick CAM assay verified that treatment with SHED-Exos inhibits micro-vascular formation, and importantly, significantly reduces the micro-vascular formation of tumors generated from xenografted OSCC cells, which was associated with the inhibition of tumor growth in vivo. Mechanistically, our data suggested that SHED-Exos are enriched with miR-100-5p and miR-1246 and are transferred to endothelial cells, which results in decreased tube formation via the down-regulation of VEGFA expression. CONCLUSIONS: These results demonstrate that SHED-Exos inhibit angiogenesis in vitro and in vivo, which suggests that SHED-Exos could potentially serve as a novel and effective therapeutic approach for anti-angiogenic treatment.


Asunto(s)
Carcinoma de Células Escamosas , Exosomas , MicroARNs , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/metabolismo , Células Madre/metabolismo
19.
Genes (Basel) ; 13(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35205342

RESUMEN

The objective of this study was to clarify the effect of kisspeptin-10 (kp-10) on the synthesis of progesterone (P4) in bovine granulosa cells (BGCs) and its mechanisms via microRNA 1246 (miR-1246). According to the results, we found that treating with kp-10 for 24 h could increase P4 level, the mRNA expression of the steroidogenesis-related gene steroidogenic acute regulatory protein (StAR), free cholesterol content, and decrease miR-1246 expression in BGCs. Overexpression of miR-1246 significantly inhibited P4 synthesis, StAR mRNA expression, and free cholesterol content in BGCs, whereas underexpression of miR-1246 significantly reversed this effect in BGCs. Additionally, overexpression of miR-1246 counteracted the accelerative effect of kp-10 on P4 synthesis, StAR mRNA expression, and free cholesterol content in BGCs. Conversely, underexpression of miR-1246 enhanced the accelerative effect of kp-10 on P4 synthesis, StAR mRNA expression, and free cholesterol content in BGCs. Meanwhile, results of dual-luciferase reporter assays indicated that miR-1246 targeted the 3'UTR of StAR in BGCs. These results demonstrated that kp-10 induced P4 synthesis in BGCs by promoting free cholesterol transport via regulating expression of miR-1246/StAR.


Asunto(s)
MicroARNs , Progesterona , Regiones no Traducidas 3' , Animales , Bovinos , Colesterol/genética , Colesterol/metabolismo , Regulación hacia Abajo , Femenino , Células de la Granulosa/metabolismo , Kisspeptinas , MicroARNs/metabolismo , Progesterona/metabolismo
20.
Mol Cell Biochem ; 477(3): 649-661, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34870753

RESUMEN

One of the most prevalent forms of endocrine malignancies is thyroid cancer. Herein, we explored the mechanisms whereby miR-1246 is involved in thyroid cancer. Phosphoinositide 3-kinase adapter protein 1 (PIK3AP1) was identified as a potential miR-1246 target, with the online Gene Expression Omnibus (GEO) database. The binding between miR-1246 and PIK3AP1 and the dynamic role of these two molecules in downstream PI3K/AKT signaling were evaluated. Analysis of GEO data demonstrated significant miR-1246 downregulation in thyroid cancer, and we confirmed that overexpression of miR-1246 can inhibit migratory, invasive, and proliferative activity in vitro and tumor growth in vivo. Subsequent studies indicated that miR-1246 overexpression decreased the protein level of PIK3AP1 and the phosphorylation of PI3K and AKT, which were reversed by PIK3AP1 overexpression. At the same time, overexpression of PIK3AP1 also reversed the miR-1246 mimics-induced inhibition proliferative, migratory, and invasive activity, while promoting increases in apoptotic death, confirming that miR-1246 function was negatively correlated with that of PIK3AP1. Subsequently, we found that the miR-1246 mimics-induced inhibition of PI3K/AKT phosphorylation was reversed by the PI3K/AKT activator IGF-1. miR-1246 mimics inhibited proliferative, migratory, and invasive activity while promoting increases in apoptotic death, which were reversed by IGF-1. Furthermore, miR-1246 agomir can inhibit tumor growth in vivo. We confirmed that miR-1246 affects the signaling pathway of PI3K/AKT via targeting PIK3AP1 and inhibits the development of thyroid cancer. Thus, miR-1246 is a new therapeutic target for thyroid cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proliferación Celular/genética , MicroARNs , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Neoplásico , Transducción de Señal/genética , Neoplasias de la Tiroides , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA