Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurol Res ; 46(9): 823-834, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38920017

RESUMEN

BACKGROUND: Spinal cord injury (SCI) lacks therapeutic reagents. miRNAs are responsible for mesenchymal stem cells (MSCs) therapy in spinal cord injury. PURPOSE: To discover the underlying therapeutic miRNA target and its mechanism for the treatment of SCI. METHOD: Two RNA sequence datasets were retrieved from the GEO Datasets database which was accessed on 30 December 2023. The targets of the top 2 ranked miRNAs (miR-540-3p and miR-433-5p) were analyzed using online databases (miRDB, miRMap, TargetScan and STRING database) and both miRNAs were screened by cell counting kit-8 (CCK-8) assay. Then, transfection and local injection of miR-540-3p were performed to examine the capacity of secretion of astrocytes and the locomotor function of SCI mice. RESULTS: The significantly high levels of miR-540-3p/433-5p were revealed. Transfection of miR-540-3p conferred inactivation of reactive astrocytes and weakened the capacity of secreting inflammatory cytokines of astrocytes. miR-433-5p was proven to not impact the proliferation of astrocytes. Co-culture of culture supernate from astrocytes transfected with miR-540-3p and neurons demonstrated the significantly preserved neurite length and decreased apoptotic level of neurons. Meanwhile, sine oculis homeobox (SIX4)/Yap1, as the target of miR-540-3p, is critical for abrogating inflammatory damage of neurons in vivo and in vitro, decreasing glial scar, and recovering locomotor function of spinal cord injury mice. Furthermore, SCI mice receiving a local injection of miR-540-3p showed smaller and lighter bladder volume and higher limb strength, but the period from urinary retention to autonomous urination of SCI mice showed no significance. CONCLUSIONS: Conclusively, miR-540 discovered from hypoxia-treated exosomes suppresses the inflammatory cytokines secreted by reactive astrocytes, partially preserves the neuronal function of spinal cord injury mice, through the SIX4/Yap1 signalling pathway.


Asunto(s)
Astrocitos , Proteínas de Homeodominio , Locomoción , MicroARNs , Recuperación de la Función , Traumatismos de la Médula Espinal , Proteínas Señalizadoras YAP , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Locomoción/fisiología , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología
2.
Mol Ther Nucleic Acids ; 29: 481-497, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035750

RESUMEN

The immature phenotype of embryonic stem cell-derived cardiomyocytes (ESC-CMs) limits their application. However, the molecular mechanisms of cardiomyocyte maturation remain largely unexplored. This study found that overexpression of long noncoding RNA (lncRNA)-Cmarr, which was highly expressed in cardiomyocytes, promoted the maturation change and physiological maturation of mouse ESC-CMs (mESC-CMs). Moreover, transplantation of cardiac patch overexpressing Cmarr exhibited better retention of mESC-CMs, reduced infarct area by enhancing vascular density in the host heart, and improved cardiac function in mice after myocardial infarction. Mechanism studies identified that Cmarr acted as a competitive endogenous RNA to impede the repression of miR-540-3p on Dtna expression and promoted the binding of the dystrophin-glycoprotein complex (DGC) and yes-associated protein (YAP), which in turn reduced the proportion of nuclear YAP and the expression of YAP target genes. Therefore, this study revealed the function and mechanism of Cmarr in promoting cardiomyocyte maturation and provided a lncRNA that can be used as a functional factor in the construction of cardiac patches for the treatment of myocardial infarction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA