Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.332
Filtrar
Más filtros

Intervalo de año de publicación
1.
Vet Q ; 44(1): 1-11, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39086189

RESUMEN

Mare endometrosis is a major reproductive problem associated with low fertility and is characterized by persistent inflammation, TGFß-1 signaling, and consequently, extracellular matrix deposition, which compromises endometrial glands. Mesenchymal stem cell-based products (MSCs), such as extracellular vesicles (EVs), have gained attention due to the regulatory effects exerted by their miRNA cargo. Here, we evaluated the impact of preconditioning equine adipose mesenchymal stem cells with TGFß-1 for short or long periods on the anti-fibrotic properties of secreted extracellular vesicles. MSCs were isolated from six healthy horses and exposed to TGFß-1 for 4, 24, and 0 h. The expression of anti-fibrotic and pro-fibrotic miRNAs and mRNAs in treated cells and miRNAs in the cargo of secreted extracellular vesicles was measured. The resulting EVs were added for 48 h to endometrial stromal cells previously induced to a fibrotic status. The expression of anti-fibrotic and pro-fibrotic genes and miRNAs was evaluated in said cells using qPCR and next-generation sequencing. Preconditioning MSCs with TGFß-1 for 4 h enriched the anti-fibrotic miRNAs (mir29c, mir145, and mir200) in cells and EVs. Conversely, preconditioning the cells for 24 h leads to a pro-fibrotic phenotype overexpressing mir192 and mir433. This finding might have implications for developing an EV-based protocol to treat endometrial fibrosis in mares.


Asunto(s)
Endometrio , Vesículas Extracelulares , Fibrosis , Células Madre Mesenquimatosas , MicroARNs , Factor de Crecimiento Transformador beta1 , Animales , Caballos , Femenino , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Endometrio/metabolismo , Endometrio/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células del Estroma/metabolismo , Células del Estroma/efectos de los fármacos , Enfermedades de los Caballos , Regulación de la Expresión Génica/efectos de los fármacos , Endometriosis/veterinaria , Endometriosis/metabolismo , Endometriosis/genética
2.
Front Cell Infect Microbiol ; 14: 1427562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086604

RESUMEN

Background: MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods: Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results: The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions: The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.


Asunto(s)
Amblyomma , Ehrlichia chaffeensis , Interacciones Huésped-Patógeno , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ehrlichia chaffeensis/genética , Interacciones Huésped-Patógeno/genética , Amblyomma/microbiología , Amblyomma/genética , Ehrlichiosis/microbiología , Perfilación de la Expresión Génica , Glándulas Salivales/microbiología , Regulación de la Expresión Génica
3.
Front Endocrinol (Lausanne) ; 15: 1380013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086902

RESUMEN

In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.


Asunto(s)
Biología Computacional , MicroARNs , Osteoblastos , Hormona Paratiroidea , MicroARNs/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Biología Computacional/métodos , Hormona Paratiroidea/farmacología , Humanos , Redes Reguladoras de Genes/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Teriparatido/farmacología
4.
Front Plant Sci ; 15: 1403869, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086918

RESUMEN

Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (PSA), poses a grave threat to the global kiwifruit industry. In this study, we examined the role of microRNAs (miRNAs) in kiwifruit's response to PSA. Kiwifruit seedlings subjected to PSA treatment showed significant changes in both miRNA and gene expression compared to the control group. We identified 364 differentially expressed miRNAs (DEMs) and 7170 differentially expressed genes (DEGs). Further analysis revealed 180 miRNAs negatively regulating 641 mRNAs. Notably, two miRNAs from the miRNA482 family, miRNA-215-3p and miRNA-29-3p, were found to increase kiwifruit's sensitivity to PSA when overexpressed. These miRNAs were linked to the regulation of NBS-LRR target genes, shedding light on their role in kiwifruit's defence against PSA. This study offers insights into the miRNA482-NBS-LRR network as a crucial component in enhancing kiwifruit bioresistance to PSA infestation and provides promising candidate genes for further research.

5.
J Orthop Translat ; 48: 39-52, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39087139

RESUMEN

Background: Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods: We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results: Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion: Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article: This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.

6.
Metab Brain Dis ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088109

RESUMEN

Alzheimer's disease (AD) is characterized by cognitive decline stemming from the accumulation of beta-amyloid (Aß) plaques and the propagation of tau pathology through synapses. Exosomes, crucial mediators in neuronal development, maintenance, and intercellular communication, have gained attention in AD research. Yet, the molecular mechanisms involving exosomal miRNAs in AD remain elusive. In this study, we treated APPswe/PSEN1dE9 transgenic (APP/PS1) mice, a model for AD, with either vehicle (ADNS) or fasudil (ADF), while C57BL/6 (control) mice received vehicle (WT). Cognitive function was evaluated using the Y-maze test, and AD pathology was confirmed through immunostaining and western blot analysis of Aß plaques and phosphorylated tau. Exosomal RNAs were extracted, sequenced, and analyzed from each mouse group. Our findings revealed that fasudil treatment improved cognitive function in AD mice, as evidenced by increased spontaneous alternation in the Y-maze test and reduced Aß plaque load and phosphorylated tau protein expression in the hippocampus. Analysis of exosomal miRNAs identified three miRNAs (mmu-let-7i-5p, mmu-miR-19a-3p, mmu-miR-451a) common to both ADNS vs ADF and WT vs ADNS groups. Utilizing miRTarBase software, we predicted and analyzed target genes associated with these miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of miRNA target genes indicated that mmu-miR-19a-3p and mmu-miR-451a are implicated in signal transduction, immune response, cellular communication, and nervous system pathways. Specifically, mmu-miR-19a-3p targeted genes involved in the sphingolipid signaling pathway, such as Pten and Tnf, while mmu-miR-451a targeted Nsmaf, Gnai3, and Akt3. Moreover, mmu-miR-451a targeted Myc in signaling pathways regulating the pluripotency of stem cells. In conclusion, fasudil treatment enhanced cognitive function by modulating exosomal MicroRNAs, particularly mmu-miR-451a and mmu-miR-19a-3p. These miRNAs hold promise as potential biomarkers and therapeutic targets for novel AD treatments.

7.
Front Endocrinol (Lausanne) ; 15: 1385079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948517

RESUMEN

Background: 177Lu-oxodotreotide peptide receptor therapy (LuPRRT) is an efficient treatment for midgut neuroendocrine tumors (NETs) of variable radiological response. Several clinical, biological, and imaging parameters may be used to establish a relative disease prognosis but none is able to predict early efficacy or toxicities. We investigated expression levels for mRNA and miRNA involved in radiosensitivity and tumor progression searching for correlations related to patient outcome during LuPRRT therapy. Methods: Thirty-five patients received LuPRRT for G1/G2 midgut NETs between May 2019 and September 2021. Peripheral blood samples were collected prior to irradiation, before and 48 h after the second and the fourth LuPRRT, and at 6-month follow-up. Multiple regression analyses and Pearson correlations were performed to identify the miRNA/mRNA signature that will best predict response to LuPRRT. Results: Focusing on four mRNAs and three miRNAs, we identified a miRNA/mRNA signature enabling the early identification of responders to LuPRRT with significant reduced miRNA/mRNA expression after the first LuPRRT administration for patients with progressive disease at 1 year (p < 0.001). The relevance of this signature was reinforced by studying its evolution up to 6 months post-LuPRRT. Moreover, nadir absolute lymphocyte count within the first 2 months after the first LuPRRT administration was significantly related to low miRNA/mRNA expression level (p < 0.05) for patients with progressive disease. Conclusion: We present a pilot study exploring a miRNA/mRNA signature that correlates with early hematologic toxicity and therapeutic response 12 months following LuPRRT. This signature will be tested prospectively in a larger series of patients.


Asunto(s)
Neoplasias Intestinales , MicroARNs , Tumores Neuroendocrinos , ARN Mensajero , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/sangre , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/patología , Masculino , Femenino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Neoplasias Intestinales/sangre , Neoplasias Intestinales/patología , Neoplasias Intestinales/genética , Neoplasias Intestinales/tratamiento farmacológico , ARN Mensajero/genética , ARN Mensajero/sangre , Anciano , Estudios de Seguimiento , Adulto , Pronóstico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Somatostatina/análogos & derivados , Somatostatina/uso terapéutico , Receptores de Péptidos/genética , Radiofármacos/uso terapéutico , Radiofármacos/administración & dosificación , Lutecio , Radioisótopos
8.
Ann Surg Oncol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951411

RESUMEN

BACKGROUND: Despite a radical operation, about half of gastric cancer (GC) patients with advanced GC experience peritoneal metastasis (PM), and the patients with PM have a poor prognosis. However, because staging laparoscopy was a highly invasive procedure for patients, identification of PM using a liquid biopsy can be useful for patients with GC. METHODS: This study analyzed two genome-wide miRNA expression profiling datasets (GSE164174 and TCGA). The study prioritized biomarkers in pretreatment plasma specimens from clinical training and validation cohorts of patients with GC. The authors developed an integrated exosomal miRNA panel and established a risk-stratification model, which was combined with the miRNA panel and currently used tumor markers (CEA, CA19-9, CA125, and CA72-4 levels). RESULTS: The comprehensive discovery effort identified a four-miRNA panel that robustly predicted the metastasis with excellent accuracy in the TCGA dataset (area under the curve [AUC] 0.86). A circulating exosomal miRNA panel was established successfully with remarkable diagnostic accuracy in the clinical training (AUC 0.85) and validation (AUC 0.86) cohorts. Moreover, the predictive accuracy of the panel was significantly superior to that of conventional clinical factors (P < 0.01), and the risk-stratification model was dramatically superior to the panel and currently used clinical factors for predicting PM (AUC 0.94; univariate: odds ratio [OR] 77.00 [P < 0.01]; multivariate OR 57.71 [P = 0.01]). CONCLUSIONS: The novel risk-stratification model for predicting PM has potential for clinical translation as a liquid biopsy assay for patients with GC. The study findings highlight the potential clinical impact of the model for improved selection and management of patients with GC.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38946424

RESUMEN

MicroRNAs (miRNAs) are implicated in the development of cancers and may serve as potential targets for therapy. However, the functions and underlying mechanisms of miRNAs in cancers are not well understood. This work aims to study the role of miR-373-3p in colon cancer cells. We find that the expression of miR-373-3p mimics promotes and the miR-373-3p inhibitor suppresses aerobic glycolysis and proliferation of colon cancer cells. Mechanistically, miR-373-3p inhibits the expression of MFN2, a gene that is known to suppress glycolysis, which leads to the activation of glycolysis and eventually the proliferation of cells. In a nude mouse tumor model, the expression of miR-373-3p in colon cancer cells promotes tumor growth by enhancing lactate formation, which is inhibited by the co-expression of MFN2 in the cells. Administration of the miR-373-3p antagomir blunts in vivo tumor growth by decreasing lactate production. In addition, in human colon cancers, the expression levels of miR-373-3p are increased, while those of MFN2 mRNA are decreased, and the increase of miR-373-3p is associated with the decrease of MFN2 mRNA. Our results reveal a previously unknown function and underlying mechanism of miR-373-3p in the regulation of glycolysis and proliferation in cancer cells and underscore the potential of targeting miR-373-3p for colon cancer treatment.

10.
Bioanalysis ; : 1-4, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949192

RESUMEN

GRAPHICAL ABSTRACT[Formula: see text].

11.
J Biol Chem ; : 107522, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960034

RESUMEN

Chemotherapy is still the main therapeutic strategy for gastric cancer (GC). However, most patients eventually acquire multidrug resistance (MDR). Hyperactivation of the EGFR signaling pathway contributes to MDR by promoting cancer cell proliferation and inhibiting apoptosis. We previously identified the secreted protein CGA as a novel ligand of EGFR and revealed a CGA/EGFR/GATA2 positive feedback circuit that confers MDR in GC. Herein, we outline a microRNA-based treatment approach for MDR reversal that targets both CGA and GATA2. We observed increased expression of CGA and GATA2 and increased activation of EGFR in GC samples. Bioinformatic analysis revealed that miR-107 could simultaneously target CGA and GATA2, and the low expression of miR-107 was correlated with poor prognosis in GC patients. The direct interactions between miR-107 and CGA or GATA2 were validated by luciferase reporter assays and western blot analysis. Overexpression of miR-107 in MDR GC cells increased their susceptibility to chemotherapeutic agents, including fluorouracil, adriamycin and vincristine, in vitro. Notably, intratumor injection of the miR-107 prodrug enhanced MDR xenograft sensitivity to chemotherapies in vivo. Molecularly, targeting CGA and GATA2 with miR-107 inhibited EGFR downstream signaling, as evidenced by the reduced phosphorylation of ERK and AKT. These results suggest that miR-107 may contribute to the development of a promising therapeutic approach for the treatment of MDR in GC.

12.
Microrna ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963098

RESUMEN

BACKGROUND: Hydrolethalus Syndrome 1 (HYDS1) is a rare disorder that occurs commonly in Finnish infants but originates from the mother. This autosomal recessive syn-drome is associated with the FBF1, which is usually expressed in the centriole. The FBF1 is an inheritable arthritis disease phenotype that includes rheumatoid arthritis. Several studies have investigated males with FBF1 mutation carriers also related to arthritis diseases, including those under rheumatoid arthritis conditions, which revealed the possibility of conferring the gene mutation to the next generation of offspring. Nonetheless, there are some complications of FBF1 mutation with target miRNAs that can be affected by exercise. OBJECTIVE: The objective of this study was to evaluate the different exercises that can be utilized to suppress the FBF1 mutation targeted by Novel-rno-miRNAs-1135 as a biomarker and assess the effectiveness of exercise in mitigating the FBF1 mutation. METHODS: Four exercise interventional groups were divided into exercise and non-exercise groups. One hundred microliter pristane-induced arthritis (PIA) was injected at the dorsal re-gion of the tails of rodents and introduced to the two PIA interventional groups. On day forty-five, all animals were euthanized, and total RNA was extracted from the blood samples of ro-dents, while polymerase chain reaction (PCR) was amplified by using 5-7 primers. Computeri-zation was used for miRNA regulation and analysis of target gene candidates. RESULTS: The novel-rno-miRNA-1135 was downregulated to FBF1 in exercise groups. The exercise was found to have no significant impact in terms of change in novel-rno-miRNA-1135 regulation of FBF1 expression. CONCLUSION: Exercise has no impact on novel-rno-miRNA-1135 targeted for FBF1 in autoso-mal recessive disease.

13.
J Cell Mol Med ; 28(13): e18522, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957040

RESUMEN

Bone non-union is a common fracture complication that can severely impact patient outcomes, yet its mechanism is not fully understood. This study used differential analysis and weighted co-expression network analysis (WGCNA) to identify susceptibility modules and hub genes associated with fracture healing. Two datasets, GSE125289 and GSE213891, were downloaded from the GEO website, and differentially expressed miRNAs and genes were analysed and used to construct the WGCNA network. Gene ontology (GO) analysis of the differentially expressed genes showed enrichment in cytokine and inflammatory factor secretion, phagocytosis, and trans-Golgi network regulation pathways. Using bioinformatic site prediction and crossover gene search, miR-29b-3p was identified as a regulator of LIN7A expression that may negatively affect fracture healing. Potential miRNA-mRNA interactions in the bone non-union mechanism were explored, and miRNA-29-3p and LIN7A were identified as biomarkers of skeletal non-union. The expression of miRNA-29b-3p and LIN7A was verified in blood samples from patients with fracture non-union using qRT-PCR and ELISA. Overall, this study identified characteristic modules and key genes associated with fracture non-union and provided insight into its molecular mechanisms. Downregulated miRNA-29b-3p was found to downregulate LIN7A protein expression, which may affect the healing process after fracture in patients with bone non-union. These findings may serve as a prognostic biomarker and potential therapeutic target for bone non-union.


Asunto(s)
Biomarcadores , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/sangre , Biomarcadores/sangre , Redes Reguladoras de Genes , Curación de Fractura/genética , Perfilación de la Expresión Génica , Biología Computacional/métodos , Femenino , Masculino , Ontología de Genes , Regulación de la Expresión Génica , Fracturas no Consolidadas/genética , Persona de Mediana Edad
14.
Mol Cell Biochem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967721

RESUMEN

Extracellular vesicles (EVs) produced from MSCs were currently considered as a novel therapeutic agent for skin tissue regeneration and repair. Preconditioning stem cells may activate more molecular pathways and release more bioactive agents. In this study, we obtained EVs from normal (N-EVs) and serum- and glucose-deprived (SGD-EVs) human umbilical cord mesenchymal stem cells (HUCMSCs), and showed that SGD-EVs promoted the migration, proliferation, and tube formation of HUVECs in vitro. In vivo experiments utilizing a rat model show that both N-EVs and SGD-EVs boosted angiogenesis of skin defects and accelerated skin wound healing, while treating wounds with SGD-EVs led to faster skin healing and enhanced angiogenesis. miRNA sequencing showed that miR-29a-3p was abundant in SGD-EVs, and overexpressing miR-29a-3p enhanced the angiogenic ability of HUVECs, while inhibiting miR-29a-3p presented the opposite effect. Further studies demonstrated that miR-29a-3p directly targeted CTNNBIP1, which mediated angiogenesis of HUCMSCs-derived EVs through inhibiting CTNNBIP1 to activate Wnt/ß-catenin signaling pathway. Taken together, these findings suggested that SGD-EVs promote angiogenesis via transferring miR-29a-3p, and activation of Wnt/ß-catenin signaling pathway played a crucial role in SGD-EVs-induced VEGFA production during wound angiogenesis. Our results offered a new avenue for modifying EVs to enhance tissue angiogenesis and augment its role in skin repair.

15.
Front Genet ; 15: 1396720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978876

RESUMEN

Introduction: Middle ear cholesteatoma is a chronic middle ear disease characterized by severe hearing loss and adjacent bone erosion, resulting in numerous complications. This study sought to identify pathways involved in N6-methyladenosine (m6A) modification of circRNA in middle ear cholesteatoma. Methods: A m6A circRNA epitranscriptomic microarray analysis was performed in middle ear cholesteatoma tissues (n = 5) and normal post-auricular skin samples (n = 5). Bioinformatics analyses subsequently explored the biological functions (Gene Ontology, GO) and signaling pathways (Kyoto Encyclopedia of Genes and Genomes, KEGG) underlying middle ear cholesteatoma pathogenesis. Methylated RNA immunoprecipitation qPCR (MeRIP-qPCR) was performed to verify the presence of circRNAs with m6A modifications in middle ear cholesteatoma and normal skin samples. Results: Microarray analysis identified 3,755 circRNAs as significantly differentially modified by m6A methylation in middle ear cholesteatoma compared with the normal post-auricular skin. Among these, 3,742 were hypermethylated (FC ≥ 2, FDR < 0.05) and 13 were hypomethylated (FC ≤ 1/2, FDR < 0.05). GO analysis terms with the highest enrichment score were localization, cytoplasm, and ATP-dependent activity for biological processes, cellular components, and molecular functions respectively. Of the eight hypermethylated circRNA pathways, RNA degradation pathway has the highest enrichment score. Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway was hypomethylated. To validate the microarray analysis, we conducted MeRIP-qPCR to assess the methylation levels of five specific m6A-modified circRNAs: hsa_circRNA_061554, hsa_circRNA_001454, hsa_circRNA_031526, hsa_circRNA_100833, and hsa_circRNA_022382. The validation was highly consistent with the findings from the microarray analysis. Conclusion: Our study firstly presents m6A modification patterns of circRNAs in middle ear cholesteatoma. This finding suggests a direction for circRNA m6A modification research in the etiology of cholesteatoma and provides potential therapeutic targets for the treatment of middle ear cholesteatoma.

16.
J Clin Exp Hepatol ; 14(6): 101445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975607

RESUMEN

Introduction: Circulating tumor cells are a promising biomarker in many malignancies. CTC dissemination during the operative procedure can lead to disease recurrence. The effect of preoperative transarterial embolization on the release of CTCs and miRNA panels and oncological outcomes in large hepatocellular carcinomas has been evaluated. Materials and methods: The study included non-metastatic HCC >5 cm in size, that were completely resected after TAE (n = 10). Blood was collected pre-TAE, post-TAE, postoperative (day 2,30 and 180) and analyzed for the presence of CTC and miRNA (miR-885-5p, miR-22-3p, miR-642b-5p). The samples were subjected to CTC enrichment, isolation and staining using the markers CD45, EpCAM, and cytokeratin (CK). The data was analyzed using Gene Expression Suite software. Results: The CTC enumeration resulted in three groups: Group 1- CTC present at both pre-TAE and postoperative day 30 (n = 4), Group 2- CTC present at pre-TAE and clearing at postoperative day 30 (n = 2), Group 3- No CTC detected at any stages (n = 3). Group 2 patients had better survival compared with the other groups. Downregulation of miRNA 22-3p also had favorable prognostic implications. Conclusion: Although preoperative TAE does not seem to impact CTC shedding, CTC clearance may prove to be a valuable biomarker in prognosticating HCC. A larger study to evaluate the significance of CTCs as a prognostic marker is warranted to further evaluate these findings.

17.
Clin Nutr ESPEN ; 63: 283-293, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972039

RESUMEN

BACKGROUND AND AIMS: The challenge posed by diabetes necessitates a paradigm shift from conventional diagnostic approaches focusing on glucose and lipid levels to the transformative realm of precision medicine. This approach, leveraging advancements in genomics and proteomics, acknowledges the individualistic genetic variations, dietary preferences, and environmental exposures in diabetes management. The study comprehensively analyzes the evolving diabetes landscape, emphasizing the pivotal role of genomics, proteomics, microRNAs (miRNAs), metabolomics, and bioinformatics. RESULTS: Precision medicine revolutionizes diabetes research and treatment by diverging from traditional diagnostic methods, recognizing the heterogeneous nature of the condition. MiRNAs, crucial post-transcriptional gene regulators, emerge as promising therapeutic targets, influencing key facets such as insulin signaling and glucose homeostasis. Metabolomics, an integral component of omics sciences, contributes significantly to diabetes research, elucidating metabolic disruptions, and offering potential biomarkers for early diagnosis and personalized therapies. Bioinformatics unveils dynamic connections between natural substances, miRNAs, and cellular pathways, aiding in the exploration of the intricate molecular terrain in diabetes. The study underscores the imperative for experimental validation in natural product-based diabetes therapy, emphasizing the need for in vitro and in vivo studies leading to clinical trials for assessing effectiveness, safety, and tolerability in real-world applications. Global cooperation and ethical considerations play a pivotal role in addressing diabetes challenges worldwide, necessitating a multifaceted approach that integrates traditional knowledge, cultural competence, and environmental awareness. CONCLUSIONS: The key components of diabetes treatment, including precision medicine, metabolomics, bioinformatics, and experimental validation, converge in future strategies, embodying a holistic paradigm for diabetes care anchored in cutting-edge research and global healthcare accessibility.

18.
Environ Int ; 190: 108874, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38972113

RESUMEN

BACKGROUND: Hexavalent chromium (Cr(Ⅵ)) is classified as a group 1 human carcinogen and increases the risk of lung cancer. Non-coding RNAs (ncRNAs) have key regulatory roles in lung cancer, but less is known about their relation to Cr(Ⅵ) exposure. OBJECTIVES: We aimed to 1) measure the expression of lung cancer-related circulating ncRNAs in exposed workers and controls; 2) assess associations between ncRNAs expression and Cr concentrations in red blood cells (RBC) and urine; and 3) evaluate correlations between the ncRNAs. METHODS: The study included 111 Cr(VI) exposed workers and 72 controls recruited from the SafeChrom project. Cr concentrations were measured in RBC (biomarker of long-term exposure) and urine (biomarker of short-term exposure) samples. Long ncRNA (lncRNA) and microRNA (miRNA) were extracted from plasma followed by deoxyribonuclease treatment, complementary DNA synthesis, and quantitative real-time polymerase chain reaction using target-specific assays for three lncRNAs (H19, MALAT1, NORAD), and four miRNAs (miR-142-3p, miR-15b-5p, miR-3940-5p, miR-451a). RESULTS: Expression levels of lncRNAs MALAT1 and NORAD, and all four miRNAs, were significantly lower in Cr(VI) exposed workers compared with controls, and correlated significantly with RBC-Cr concentrations (rS = -0.16 to -0.38). H19 was non-significantly increased in exposed workers but significantly correlated with miR-142-3p (rS = -0.33) and miR-15b-5p (rS = -0.30), and NORAD was significantly positively correlated with all four miRNAs (rS = 0.17 to 0.46). In multivariate regression models adjusting for confounders, expressions of lncRNAs MALAT1 and NORAD and all miRNAs were still significantly lower in the exposed group compared with controls, and the expression decreased with increasing RBC-Cr concentrations. CONCLUSIONS: Cr(VI) exposure was inversely and in a dose-response manner associated with the expression of circulating non-coding RNA, which suggests ncRNAs as potential biomarkers for Cr(VI)-induced toxicity. Correlations between miRNAs and lncRNAs suggest that they participate in the same lncRNA-miRNA-messenger RNA regulatory axes, which may play important roles in Cr(VI) carcinogenesis.

19.
Bioelectrochemistry ; 160: 108771, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972158

RESUMEN

MiRNA-21 is recognized as an important biological marker for the diagnosis, treatment, and prognosis of breast cancer. Here, we have created a nanochannel biosensor utilizing the duplex-specific nuclease (DSN) signal amplification strategy to achieve the detection of miRNAs. In this system, DNA as the capture probe was covalently immobilized on the surface of nanochannels, which hybridized with the target miRNA and forms RNA/DNA duplexes. DSN could cleave the probe DNA in RNA/DNA duplexes, recycling target miRNA, which may again hybridized with other DNA probes. After N cycles, most of the DNA probes had been cleaved, and the content of miRNA could be quantified by detecting changes in surface charge density. This biosensor can distinguish miR-21 from non-complementary miRNAs and one-base mismatched miRNAs, with reliable detection limits as low as 1 fM in PBS. In addition, we had successfully applied this method to analysis of total RNA samples in MCF-7 cells and HeLa cells, and the nanochannels had also shown excellent responsiveness and strong anti-interference ability. This new method is expected to contribute to miRNA detection in clinical diagnostics, providing a unique approach to detecting and distinguishing disease-associated molecules.

20.
BMC Genom Data ; 25(Suppl 1): 67, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978021

RESUMEN

BACKGROUND: The competitive endogenous RNA (ceRNA) hypothesis suggests that microRNAs (miRNAs) mediate a regulatory relation between long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) which share similar miRNA response elements (MREs) to bind to the same miRNA. Since the ceRNA hypothesis was proposed, several studies have been conducted to construct a network of lncRNAs, miRNAs and mRNAs in cancer. However, most cancer-related ceRNA networks are intended for representing a general relation of RNAs in cancer rather than for a patient-specific relation. Due to the heterogeneous nature of cancer, lncRNA-miRNA-mRNA interactions can vary in different patients. RESULTS: We have developed a new method for constructing a ceRNA network of lncRNAs, miRNAs and mRNAs, which is specific to an individual cancer patient and for finding prognostic biomarkers consisting of lncRNA-miRNA-mRNA triplets. We tested our method on extensive data sets of three types of cancer (breast cancer, liver cancer, and lung cancer) and obtained potential prognostic lncRNA-miRNA-mRNA triplets for each type of cancer. CONCLUSIONS: Analysis of expression patterns of the RNAs involved in the triplets and survival rates of cancer patients revealed several interesting findings. First, even for the same cancer type, prognostic lncRNA-miRNA-mRNA triplets can be different depending on whether lncRNA and mRNA show opposite or similar expression patterns. Second, prognostic lncRNA-miRNA-mRNA triplets are often more predictive of survival rates than RNA pairs or individual RNAs. Our approach will be useful for constructing patient-specific lncRNA-miRNA-mRNA networks and for finding prognostic biomarkers from the networks.


Asunto(s)
Biomarcadores de Tumor , Redes Reguladoras de Genes , MicroARNs , Neoplasias , ARN Largo no Codificante , ARN Mensajero , Humanos , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , MicroARNs/genética , Biomarcadores de Tumor/genética , Pronóstico , Neoplasias/genética , Neoplasias/mortalidad , Redes Reguladoras de Genes/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Regulación Neoplásica de la Expresión Génica/genética , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA