Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
Más filtros

Intervalo de año de publicación
1.
Comput Biol Med ; 180: 108866, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089107

RESUMEN

Drug resistance is one of the biggest challenges in the fight against cancer. In particular, in the case of glioblastoma, the most lethal brain tumour, resistance to temozolomide (the standard of care drug for chemotherapy in this tumour) is one of the main reasons behind treatment failure and hence responsible for the poor prognosis of patients diagnosed with this disease. In this work, we combine the power of three-dimensional in vitro experiments of treated glioblastoma spheroids with mathematical models of tumour evolution and adaptation. We use a novel approach based on internal variables for modelling the acquisition of resistance to temozolomide that was observed in experiments for a group of treated spheroids. These internal variables describe the cell's phenotypic state, which depends on the history of drug exposure and affects cell behaviour. We use model selection to determine the most parsimonious model and calibrate it to reproduce the experimental data, obtaining a high level of agreement between the in vitro and in silico outcomes. A sensitivity analysis is carried out to investigate the impact of each model parameter in the predictions. More importantly, we show how the model is useful for answering biological questions, such as what is the intrinsic adaptation mechanism, or for separating the sensitive and resistant populations. We conclude that the proposed in silico framework, in combination with experiments, can be useful to improve our understanding of the mechanisms behind drug resistance in glioblastoma and to eventually set some guidelines for the design of new treatment schemes.

2.
J Appl Crystallogr ; 57(Pt 4): 955-965, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108817

RESUMEN

Small-angle scattering (SAS) is a key experimental technique for analyzing nanoscale structures in various materials. In SAS data analysis, selecting an appropriate mathematical model for the scattering intensity is critical, as it generates a hypothesis of the structure of the experimental sample. Traditional model selection methods either rely on qualitative approaches or are prone to overfitting. This paper introduces an analytical method that applies Bayesian model selection to SAS measurement data, enabling a quantitative evaluation of the validity of mathematical models. The performance of the method is assessed through numerical experiments using artificial data for multicomponent spherical materials, demonstrating that this proposed analysis approach yields highly accurate and interpretable results. The ability of the method to analyze a range of mixing ratios and particle size ratios for mixed components is also discussed, along with its precision in model evaluation by the degree of fitting. The proposed method effectively facilitates quantitative analysis of nanoscale sample structures in SAS, which has traditionally been challenging, and is expected to contribute significantly to advancements in a wide range of fields.

3.
J Alzheimers Dis ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121117

RESUMEN

Background: Mild cognitive impairment (MCI) patients are at a high risk of developing Alzheimer's disease and related dementias (ADRD) at an estimated annual rate above 10%. It is clinically and practically important to accurately predict MCI-to-dementia conversion time. Objective: It is clinically and practically important to accurately predict MCI-to-dementia conversion time by using easily available clinical data. Methods: The dementia diagnosis often falls between two clinical visits, and such survival outcome is known as interval-censored data. We utilized the semi-parametric model and the random forest model for interval-censored data in conjunction with a variable selection approach to select important measures for predicting the conversion time from MCI to dementia. Two large AD cohort data sets were used to build, validate, and test the predictive model. Results: We found that the semi-parametric model can improve the prediction of the conversion time for patients with MCI-to-dementia conversion, and it also has good predictive performance for all patients. Conclusions: Interval-censored data should be analyzed by using the models that were developed for interval- censored data to improve the model performance.

4.
PeerJ Comput Sci ; 10: e2217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145229

RESUMEN

As the pandemic continues to pose challenges to global public health, developing effective predictive models has become an urgent research topic. This study aims to explore the application of multi-objective optimization methods in selecting infectious disease prediction models and evaluate their impact on improving prediction accuracy, generalizability, and computational efficiency. In this study, the NSGA-II algorithm was used to compare models selected by multi-objective optimization with those selected by traditional single-objective optimization. The results indicate that decision tree (DT) and extreme gradient boosting regressor (XGBoost) models selected through multi-objective optimization methods outperform those selected by other methods in terms of accuracy, generalizability, and computational efficiency. Compared to the ridge regression model selected through single-objective optimization methods, the decision tree (DT) and XGBoost models demonstrate significantly lower root mean square error (RMSE) on real datasets. This finding highlights the potential advantages of multi-objective optimization in balancing multiple evaluation metrics. However, this study's limitations suggest future research directions, including algorithm improvements, expanded evaluation metrics, and the use of more diverse datasets. The conclusions of this study emphasize the theoretical and practical significance of multi-objective optimization methods in public health decision support systems, indicating their wide-ranging potential applications in selecting predictive models.

5.
Entropy (Basel) ; 26(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056962

RESUMEN

Most statistical modeling applications involve the consideration of a candidate collection of models based on various sets of explanatory variables. The candidate models may also differ in terms of the structural formulations for the systematic component and the posited probability distributions for the random component. A common practice is to use an information criterion to select a model from the collection that provides an optimal balance between fidelity to the data and parsimony. The analyst then typically proceeds as if the chosen model was the only model ever considered. However, such a practice fails to account for the variability inherent in the model selection process, which can lead to inappropriate inferential results and conclusions. In recent years, inferential methods have been proposed for multimodel frameworks that attempt to provide an appropriate accounting of modeling uncertainty. In the frequentist paradigm, such methods should ideally involve model selection probabilities, i.e., the relative frequencies of selection for each candidate model based on repeated sampling. Model selection probabilities can be conveniently approximated through bootstrapping. When the Akaike information criterion is employed, Akaike weights are also commonly used as a surrogate for selection probabilities. In this work, we show that the conventional bootstrap approach for approximating model selection probabilities is impacted by bias. We propose a simple correction to adjust for this bias. We also argue that Akaike weights do not provide adequate approximations for selection probabilities, although they do provide a crude gauge of model plausibility.

6.
Sci Rep ; 14(1): 15743, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977791

RESUMEN

Hierarchical models are common for ecological analysis, but determining appropriate model selection methods remains an ongoing challenge. To confront this challenge, a suitable method is needed to evaluate and compare available candidate models. We compared performance of conditional WAIC, a joint-likelihood approach to WAIC (WAICj), and posterior-predictive loss for selecting between candidate N-mixture models. We tested these model selection criteria on simulated single-season N-mixture models, simulated multi-season N-mixture models with temporal auto-correlation, and three case studies of single-season N-mixture models based on eBird data. WAICj proved more accurate than the standard conditional formulation or posterior-predictive loss, even when models were temporally correlated, suggesting WAICj is a robust alternative to model selection for N-mixture models.


Asunto(s)
Modelos Estadísticos , Funciones de Verosimilitud , Simulación por Computador , Estaciones del Año , Animales
7.
Behav Res Methods ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987450

RESUMEN

Generalized linear mixed models (GLMMs) have great potential to deal with count data in single-case experimental designs (SCEDs). However, applied researchers have faced challenges in making various statistical decisions when using such advanced statistical techniques in their own research. This study focused on a critical issue by investigating the selection of an appropriate distribution to handle different types of count data in SCEDs due to overdispersion and/or zero-inflation. To achieve this, I proposed two model selection frameworks, one based on calculating information criteria (AIC and BIC) and another based on utilizing a multistage-model selection procedure. Four data scenarios were simulated including Poisson, negative binominal (NB), zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB). The same set of models (i.e., Poisson, NB, ZIP, and ZINB) were fitted for each scenario. In the simulation, I evaluated 10 model selection strategies within the two frameworks by assessing the model selection bias and its consequences on the accuracy of the treatment effect estimates and inferential statistics. Based on the simulation results and previous work, I provide recommendations regarding which model selection methods should be adopted in different scenarios. The implications, limitations, and future research directions are also discussed.

8.
Res Sq ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38947100

RESUMEN

Purpose: Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace. This study introduces an unsupervised feature engineering technique (Kohonen-Self-Organizing-Map (K-SOM)) to estimate the voxel-wise probability of each nested model. Methods: Sixty-six immune-compromised-RNU rats were implanted with human U-251N cancer cells, and DCE-MRI data were acquired from all the rat brains. The time-trace of change in the longitudinalrelaxivity Δ R 1 for all animals' brain voxels was calculated. DCE-MRI pharmacokinetic (PK) analysis was performed using NMS to estimate three model regions: Model-1: normal vasculature without leakage, Model-2: tumor tissues with leakage without back-flux to the vasculature, Model-3: tumor vessels with leakage and back-flux. Approximately two hundred thirty thousand (229,314) normalized Δ R 1 profiles of animals' brain voxels along with their NMS results were used to build a K-SOM (topology-size: 8×8, with competitive-learning algorithm) and probability map of each model. K-fold nested-cross-validation (NCV, k=10) was used to evaluate the performance of the K-SOM probabilistic-NMS (PNMS) technique against the NMS technique. Results: The K-SOM PNMS's estimation for the leaky tumor regions were strongly similar (Dice-Similarity-Coefficient, DSC=0.774 [CI: 0.731-0.823], and 0.866 [CI: 0.828-0.912] for Models 2 and 3, respectively) to their respective NMS regions. The mean-percent-differences (MPDs, NCV, k=10) for the estimated permeability parameters by the two techniques were: -28%, +18%, and +24%, for v p , K trans , and v e , respectively. The KSOM-PNMS technique produced microvasculature parameters and NMS regions less impacted by the arterial-input-function dispersion effect. Conclusion: This study introduces an unsupervised model-averaging technique (K-SOM) to estimate the contribution of different nested-models in PK analysis and provides a faster estimate of permeability parameters.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38967731

RESUMEN

Clinical trial endpoints are often bounded outcome scores (BOS), which are variables having restricted values within finite intervals. Common analysis approaches may treat the data as continuous, categorical, or a mixture of both. The appearance of BOS data being simultaneously continuous and categorical easily leads to confusions in pharmacometrics regarding the appropriate domain for model evaluation and the circumstances under which data likelihoods can be compared. This commentary aims to clarify these fundamental issues and facilitate appropriate pharmacometric analyses.

10.
J Appl Stat ; 51(10): 1843-1860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071251

RESUMEN

A growing literature suggests that gene expression can be greatly altered in disease conditions, and identifying those changes will improve the understanding of complex diseases such as cancers or diabetes. A prevailing direction in the analysis of gene expression studies the changes in gene pathways which include sets of related genes. Therefore, introducing structured exploration to differential analysis of gene expression networks may lead to meaningful discoveries. The topic of this paper is differential network analysis, which focuses on capturing the differences between two or more precision matrices. We discuss the connection between the thresholding method and the D-trace loss method on differential network analysis in the case that the precision matrices share the common connected components. Based on this connection, we further propose the cluster D-trace loss method which directly estimates the differential network and achieves model selection consistency. Simulation studies demonstrate its improved performance and computational efficiency. Finally, the usefulness of our proposed estimator is demonstrated by a real-data analysis on non-small cell lung cancer.

11.
Data Sci Sci ; 3(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947225

RESUMEN

In mediation analysis, the exposure often influences the mediating effect, i.e., there is an interaction between exposure and mediator on the dependent variable. When the mediator is high-dimensional, it is necessary to identify non-zero mediators M and exposure-by-mediator ( X -by- M ) interactions. Although several high-dimensional mediation methods can naturally handle X -by- M interactions, research is scarce in preserving the underlying hierarchical structure between the main effects and the interactions. To fill the knowledge gap, we develop the XMInt procedure to select M and X -by- M interactions in the high-dimensional mediators setting while preserving the hierarchical structure. Our proposed method employs a sequential regularization-based forward-selection approach to identify the mediators and their hierarchically preserved interaction with exposure. Our numerical experiments showed promising selection results. Further, we applied our method to ADNI morphological data and examined the role of cortical thickness and subcortical volumes on the effect of amyloid-beta accumulation on cognitive performance, which could be helpful in understanding the brain compensation mechanism.

12.
Math Med Biol ; 41(2): 110-134, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875109

RESUMEN

Myeloproliferative neoplasms (MPN) are blood cancers that appear after acquiring a driver mutation in a hematopoietic stem cell. These hematological malignancies result in the overproduction of mature blood cells and, if not treated, induce a risk of cardiovascular events and thrombosis. Pegylated IFN$\alpha $ is commonly used to treat MPN, but no clear guidelines exist concerning the dose prescribed to patients. We applied a model selection procedure and ran a hierarchical Bayesian inference method to decipher how dose variations impact the response to the therapy. We inferred that IFN$\alpha $ acts on mutated stem cells by inducing their differentiation into progenitor cells; the higher the dose, the higher the effect. We found that the treatment can induce long-term remission when a sufficient (patient-dependent) dose is reached. We determined this minimal dose for individuals in a cohort of patients and estimated the most suitable starting dose to give to a new patient to increase the chances of being cured.


Asunto(s)
Teorema de Bayes , Interferón-alfa , Trastornos Mieloproliferativos , Humanos , Trastornos Mieloproliferativos/tratamiento farmacológico , Interferón-alfa/administración & dosificación , Conceptos Matemáticos , Relación Dosis-Respuesta a Droga
13.
Stat Med ; 43(18): 3403-3416, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847215

RESUMEN

Conventional pharmacokinetic (PK) bioequivalence (BE) studies aim to compare the rate and extent of drug absorption from a test (T) and reference (R) product using non-compartmental analysis (NCA) and the two one-sided test (TOST). Recently published regulatory guidance recommends alternative model-based (MB) approaches for BE assessment when NCA is challenging, as for long-acting injectables and products which require sparse PK sampling. However, our previous research on MB-TOST approaches showed that model misspecification can lead to inflated type I error. The objective of this research was to compare the performance of model selection (MS) on R product arm data and model averaging (MA) from a pool of candidate structural PK models in MBBE studies with sparse sampling. Our simulation study was inspired by a real case BE study using a two-way crossover design. PK data were simulated using three structural models under the null hypothesis and one model under the alternative hypothesis. MB-TOST was applied either using each of the five candidate models or following MS and MA with or without the simulated model in the pool. Assuming T and R have the same PK model, our simulation shows that following MS and MA, MB-TOST controls type I error rates at or below 0.05 and attains similar or even higher power than when using the simulated model. Thus, we propose to use MS prior to MB-TOST for BE studies with sparse PK sampling and to consider MA when candidate models have similar Akaike information criterion.


Asunto(s)
Simulación por Computador , Estudios Cruzados , Modelos Estadísticos , Equivalencia Terapéutica , Humanos , Farmacocinética
14.
Entropy (Basel) ; 26(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38920443

RESUMEN

The road passenger transportation enterprise is a complex system, requiring a clear understanding of their active safety situation (ASS), trends, and influencing factors. This facilitates transportation authorities to promptly receive signals and take effective measures. Through exploratory factor analysis and confirmatory factor analysis, we delved into potential factors for evaluating ASS and extracted an ASS index. To predict obtaining a higher ASS information rate, we compared multiple time series models, including GRU (gated recurrent unit), LSTM (long short-term memory), ARIMA, Prophet, Conv_LSTM, and TCN (temporal convolutional network). This paper proposed the WDA-DBN (water drop algorithm-Deep Belief Network) model and employed DEEPSHAP to identify factors with higher ASS information content. TCN and GRU performed well in the prediction. Compared to the other models, WDA-DBN exhibited the best performance in terms of MSE and MAE. Overall, deep learning models outperform econometric models in terms of information processing. The total time spent processing alarms positively influences ASS, while variables such as fatigue driving occurrences, abnormal driving occurrences, and nighttime driving alarm occurrences have a negative impact on ASS.

15.
Ecology ; 105(7): e4327, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38859712

RESUMEN

Hierarchical models can express ecological dynamics using a combination of fixed and random effects, and measurement of their complexity (effective degrees of freedom, EDF) requires estimating how much random effects are shrunk toward a shared mean. Estimating EDF is helpful to (1) penalize complexity during model selection and (2) to improve understanding of model behavior. I applied the conditional Akaike Information Criterion (cAIC) to estimate EDF from the finite-difference approximation to the gradient of model predictions with respect to each datum. I confirmed that this has similar behavior to widely used Bayesian criteria, and I illustrated ecological applications using three case studies. The first compared model parsimony with or without time-varying parameters when predicting density-dependent survival, where cAIC favors time-varying demographic parameters more than conventional Akaike Information Criterion. The second estimates EDF in a phylogenetic structural equation model, and identifies a larger EDF when predicting longevity than mortality rates in fishes. The third compares EDF for a species distribution model fitted for 20 bird species and identifies those species requiring more model complexity. These highlight the ecological and statistical insight from comparing EDF among experimental units, models, and data partitions, using an approach that can be broadly adopted for nonlinear ecological models.


Asunto(s)
Modelos Biológicos , Animales , Ecosistema , Aves/fisiología , Peces/fisiología , Dinámica Poblacional
16.
Educ Psychol Meas ; 84(2): 271-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38898876

RESUMEN

This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with multidimensional measuring instrument components, where the bifactor model is found consistently inferior to the second-order model in terms of the BIC even though the data on a large number of replications at different sample sizes were generated following the bifactor model. We therefore caution researchers that routine reliance on the BIC for the purpose of discriminating between these two widely used models may not always lead to correct decisions with respect to model choice.

17.
Stat Med ; 43(16): 3073-3091, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38800970

RESUMEN

We propose a Bayesian model selection approach that allows medical practitioners to select among predictor variables while taking their respective costs into account. Medical procedures almost always incur costs in time and/or money. These costs might exceed their usefulness for modeling the outcome of interest. We develop Bayesian model selection that uses flexible model priors to penalize costly predictors a priori and select a subset of predictors useful relative to their costs. Our approach (i) gives the practitioner control over the magnitude of cost penalization, (ii) enables the prior to scale well with sample size, and (iii) enables the creation of our proposed inclusion path visualization, which can be used to make decisions about individual candidate predictors using both probabilistic and visual tools. We demonstrate the effectiveness of our inclusion path approach and the importance of being able to adjust the magnitude of the prior's cost penalization through a dataset pertaining to heart disease diagnosis in patients at the Cleveland Clinic Foundation, where several candidate predictors with various costs were recorded for patients, and through simulated data.


Asunto(s)
Teorema de Bayes , Simulación por Computador , Cardiopatías , Modelos Estadísticos , Humanos , Cardiopatías/economía , Cardiopatías/diagnóstico , Costos de la Atención en Salud/estadística & datos numéricos , Masculino
18.
Multivariate Behav Res ; : 1-17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779786

RESUMEN

Linear mixed-effects models have been increasingly used to analyze dependent data in psychological research. Despite their many advantages over ANOVA, critical issues in their analyses remain. Due to increasing random effects and model complexity, estimation computation is demanding, and convergence becomes challenging. Applied users need help choosing appropriate methods to estimate random effects. The present Monte Carlo simulation study investigated the impacts when the restricted maximum likelihood (REML) and Bayesian estimation models were misspecified in the estimation. We also compared the performance of Akaike information criterion (AIC) and deviance information criterion (DIC) in model selection. Results showed that models neglecting the existing random effects had inflated Type I errors, unacceptable coverage, and inaccurate R-squared measures of fixed and random effects variation. Furthermore, models with redundant random effects had convergence problems, lower statistical power, and inaccurate R-squared measures for Bayesian estimation. The convergence problem is more severe for REML, while reduced power and inaccurate R-squared measures were more severe for Bayesian estimation. Notably, DIC was better than AIC in identifying the true models (especially for models including person random intercept only), improving convergence rates, and providing more accurate effect size estimates, despite AIC having higher power than DIC with 10 items and the most complicated true model.

19.
Ecotoxicol Environ Saf ; 278: 116379, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714082

RESUMEN

Species sensitivity distributions (SSDs) estimated by fitting a statistical distribution to ecotoxicity data are indispensable tools used to derive the hazardous concentration for 5 % of species (HC5) and thereby a predicted no-effect concentration in environmental risk assessment. Whereas various statistical distributions are available for SSD estimation, the fundamental question of which statistical distribution should be used has received limited systematic analysis. We aimed to address this knowledge gap by applying four frequently used statistical distributions (log-normal, log-logistic, Burr type III, and Weibull distributions) to acute and chronic SSD estimation using aquatic toxicity data for 191 and 31 chemicals, respectively. Based on the differences in the corrected Akaike's information criterion (AICc) as well as visual inspection of the fitting of the lower tails of SSD curves, the log-normal SSD was generally better or equally good for the majority of chemicals examined. Together with the fact that the ratios of HC5 values of other alternative SSDs to those of log-normal SSDs generally fell within the range 0.1-10, our findings indicate that the log-normal distribution can be a reasonable first candidate for SSD derivation, which does not contest the existing widespread use of log-normal SSDs.


Asunto(s)
Contaminantes Químicos del Agua , Medición de Riesgo , Animales , Contaminantes Químicos del Agua/toxicidad , Ecotoxicología , Especificidad de la Especie , Pruebas de Toxicidad Aguda , Organismos Acuáticos/efectos de los fármacos , Pruebas de Toxicidad Crónica , Modelos Estadísticos
20.
Ecology ; 105(6): e4283, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738264

RESUMEN

As data and computing power have surged in recent decades, statistical modeling has become an important tool for understanding ecological patterns and processes. Statistical modeling in ecology faces two major challenges. First, ecological data may not conform to traditional methods, and second, professional ecologists often do not receive extensive statistical training. In response to these challenges, the journal Ecology has published many innovative statistical ecology papers that introduced novel modeling methods and provided accessible guides to statistical best practices. In this paper, we reflect on Ecology's history and its role in the emergence of the subdiscipline of statistical ecology, which we define as the study of ecological systems using mathematical equations, probability, and empirical data. We showcase 36 influential statistical ecology papers that have been published in Ecology over the last century and, in so doing, comment on the evolution of the field. As data and computing power continue to increase, we anticipate continued growth in statistical ecology to tackle complex analyses and an expanding role for Ecology to publish innovative and influential papers, advancing the discipline and guiding practicing ecologists.


Asunto(s)
Ecología , Ecología/métodos , Historia del Siglo XX , Historia del Siglo XXI , Publicaciones Periódicas como Asunto , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA